The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites

Gerard E. Kaiko,1,3 Stacy H. Ryu,1,3 Olivia I. Koues,1 Patrick L. Collins,1 Lilianna Solnica-Krezel,2 Edward J. Pearce,1,4 Erika L. Pearce,1 Eugene M. Oltz,1 and Thaddeus S. Stappenbeck1,2,*

1Department of Pathology and Immunology
2Department of Developmental Biology
Washington University School of Medicine, St. Louis, MO 63110, USA
3Co-first author
4Present address: Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
*Correspondence: stappenb@wustl.edu
http://dx.doi.org/10.1016/j.cell.2016.05.018
Background

- Stem and progenitor cells located in the crypts of Lieberkühn give rise to all differentiated cell types of the intestinal epithelial layer.
- The impact of the microbiota and its metabolites is poorly understood.

Findings

- Butyrate suppresses epithelial proliferation.
- Colonocytes protect stem and progenitor cells from the butyrate by metabolizing it.
- Butyrate suppresses stem cell proliferation via a Foxo3-dependent mechanism.
The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites

Graphical Abstract

Highlights
- Microbial metabolite screening identifies intestinal stem cell effectors
- Butyrate suppresses intestinal stem cell proliferation upon exposure
- Crypt structure and colonocytes protect stem/progenitor cells

Authors
Gerard E. Kaiko, Stacy H. Ryu, Olivia I. Koues, ..., Erika L. Pearce, Eugene M. Oltz, Thaddeus S. Stappenbeck

Correspondence
stappenb@wustl.edu

In Brief
The architecture of intestinal crypts protects the stem cells at their base from a growth-inhibiting metabolite derived from the gut microbiome. Might these findings suggest co-evolution of mammalian anatomy with commensal flora?

Accession Numbers
GSE74601
E-MTAB-4005

Kaiko et al., 2016, Cell 165, 1708–1720
June 16, 2016
© 2016 Elsevier Inc.
http://dx.doi.org/10.1016/j.cell.2016.05.018
References

Review on intestinal stem cells

Impact of the microbiota on the intestinal content metabolites

Description of the spheroid culture technique
Gut Microbiota Drive Autoimmune Arthritis by Promoting Differentiation and Migration of Peyer’s Patch T Follicular Helper Cells

Fei Teng,1 Christina N. Klinger,1 Krysta M. Felix,1 C. Pierce Bradley,1 Eric Wu,1 Nhan L. Tran,1 Yoshinori Umesaki,3 and Hsin-Jung Joyce Wu1,2,*

1Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA
2Arizona Arthritis Center, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
3Yakult Central Institute, Izumi 5-11, Kunitachi, Tokyo, Japan
*Correspondence: joycewu@email.arizona.edu
http://dx.doi.org/10.1016/j.immuni.2016.03.013
Background

- SFB drives autoimmune arthritis in the K/BxN mouse model by the induction of Th17 cells.
- T follicular helper cells can play a role in the development of rheumatoid arthritis.
- Impairment of the TFH can alter the microbiota.

Findings

- SFB drives K/BxN arthritis in SPF conditions with increased TFH and GC B cells in the spleen, lymph nodes and PP.
- TFH differentiation is induced in the PP; the generated cells migrate to systemic sites.
- PP and DCs are essential for the SFB-induced arthritis.
- SFB enhances TFH differentiation by inhibiting IL-2 signaling.
Gut Microbiota Drive Autoimmune Arthritis by Promoting Differentiation and Migration of Peyer’s Patch T Follicular Helper Cells

Highlights
- SFB enhance autoimmune arthritis, reflected by elevated auto-Ab, GC, and Tfh cell responses
- SFB-driven differentiation and egress of PP Tfh cells to systemic sites cause disease
- SFB induce PP Tfh cell differentiation by limiting the access of IL-2 to PP CD4^+ T cells
- DCs are required for SFB-mediated IL-2Rα suppression and Bcl-6 upregulation in PPs

Authors
Fei Teng, Christina N. Klinger, Krysta M. Felix, ..., Nhan L. Tran, Yoshinori Umesaki, Hsin-Jung Joyce Wu

Correspondence
joycewu@email.arizona.edu

In Brief
The mechanism by which gut microbiota affect systemic diseases is unclear. Wu and colleagues demonstrate that a type of commensal gut bacteria, segmented filamentous bacteria, triggers autoimmune arthritis by inducing differentiation and migration of gut T follicular helper cells to systemic lymphoid sites, leading to increased auto-antibody production and exacerbation of arthritis.

Teng et al., 2016, Immunity 44, 875–888
April 19, 2016
ª 2016 Elsevier Inc.
http://dx.doi.org/10.1016/j.immuni.2016.03.013
References

Review on the modulation of pro-inflammatory responses by the microbiota

Review: TFH and disease pathogenesis

SFB, arthritis and Th17 cells

Arthritis model