Supplementary Materials for

Nonredundant Function of Soluble LTα3 Produced by Innate Lymphoid Cells in Intestinal Homeostasis

Andrey A. Kruglov,* Sergei I. Grivennikov, Dmitry V. Kuprash, Caroline Winsauer, Sandra Prepens, Gitta Maria Seleznik, Gerard Eberl, Dan R. Littman, Mathias Heikenwalder, Alexei V. Tumanov, Sergei A. Nedospasov*

*Corresponding author. E-mail: andrey_krugloff@mail.ru (A.A.K.); sergei@nedos.net (S.A.N.)

Published 6 December 2013, Science 342, 1243 (2013)
DOI: 10.1126/science.1243364

This PDF file includes:
Materials and Methods
Figs. S1 to S10
Table S1
References
Materials and methods

Mice

LTα^{ff}, LTα^{ΔILC,T}, LTβ^{ΔILC,T} and LTα^{ΔT} were generated during this study. LTβ^{ff},

TNF KO, LTα^{-/-}, TNFR1 KO and TNFR2 KO mice were described elsewhere (19, 20, 31-33, 34, 35, 36). TCRαβ^{-/-}, IL10^{-/-} were provided by Dr. S. Fillatreau

(DRFZ, Germany); CD40L^{-/-} KO mice were provided by Dr. A. Thiel (BCRT, Germany). TCRβδ^{-/-} mice were purchased from Jackson laboratory. LTβ^{ΔILC,T} TCRαβ^{-/-}, LTβ^{ΔILC,T} TCRβδ^{-/-}, LTα^{-/-}IL-10^{-/-} mice were generated during this

study. All mice were bred and kept under pathogen free conditions. Littermate

controls (LTβ^{ff} and LTα^{ff}, respectively) were used as wild type controls. All

animal procedures were approved and carried out in accordance with national

regulations for animal protection.

Bone marrow transfer experiments

Bone marrow chimeras were set up as follows: bone marrow cells were isolated

from C57BL/6, TNFR1 KO and TNFR2 KO, LTα^{ΔILC,T}, LTβ^{ΔILC,T} and LTα^{ΔT} mice

and 3 × 10^6 bone marrow cells from each donor were injected into lethally

irradiated recipients (10 cagy) 24 hr after irradiation. Analysis of IgA in chimeric

mice was performed 6 weeks after transfer.

In vivo manipulations

To activate CD40 signaling, WT and LTα^{ΔILC,T} mice were injected with 100 mg

agonistic anti-CD40 (FGK45) three times on day 0, 2 and 4. Two weeks after first
injection, mice were analyzed for IgA production in the gut. For acute dextran sodium sulfate (DSS) colitis induction, mice were treated with 1.5% DSS in drinking water for 5 days and then put back on normal drinking water for last three days. Live splenic TCRβ positive lymphocytes were purified by sorting using FACS Aria cell sorter (BD Bioscience) and 3×10⁶ cells were injected intraperitoneally into LTβΔ^ILC₃ TCRβδ^−/− recipients.

Flow cytometry

Fc receptors were blocked with antibody 2.4G2 (10 μg/ml), followed by staining with antibodies against various markers. Antibodies against CD45 (30F11), B220 (RA3.6B2), RORγt (Q31-378), CD23 (B3B4) and secondary reagents SA-PE, SA-PerCP, SA-PE-Cy7 and SA-Cy5 were from BD Bioscience. Antibodies against CD11c (N418), CD11b (M1/70.15.11), Gr1 (RB6-8C5), CD4 (GK1.5), IgM (M41), IL7Rα (A7R34), Thy1.2 (HO13.4), CD19 (1D3), IgD (11.26c), CD21 (7G6), MHCII (M5/114), CD44 (IM7) were purified from respective hybridomas and conjugated to fluorochromes at DRFZ, Berlin. Antibodies against CD3 (145-2C11), IgA (11-44-2), CD11c (N418), CD117 (2B8), CCR9 (eBioCW-1.2), LPAM-1 (DATK32), CD103 (2E7), KI67 (SolA15), TCRβ (H57-597) were purchased from eBioscience. Goat polyclonal anti-IgA antibody was purchased from Bethyl laboratories. CCR6 antibody was purchased from RnD Systems. Exclusion of dead cells was achieved by staining with DAPI (Invitrogen), Propidium Iodide (Sigma-Aldrich) or Fixable Viability Dye eFluor® 450/ eFluor® 660 (eBioscience). Surface lymphotoxin was stained using LTβR-Fc IgG fusion protein kindly
Immunofluorescence and immunohistochemical analysis

Intestine pieces were snap-frozen in OCT-compound (Sakura Tec) and horizontal sections (7 μm) were cut. Slides were fixed with ice-cold acetone, blocked with anti-FcγR antibody (2.4G2) in PBS/BSA and stained with antibodies against IgA (Goat polyclonal; Bethyl Laboratories), B220 (RA3-6B2), RORγt (B2D; eBioscience) for 45 min. Slides were washed, counterstained with DAPI, mounted using Fluoromount G (Southern Biotech) and visualized using Carl Zeiss epifluorescent microscope.

Cell isolation

Intestinal lamina propria lymphocytes were isolated as follows: intestines were collected, Peyer’s patches were carefully removed and intestines were open longitudinally. Intestines were subsequently incubated in RPMI-1640 containing 5%FCS, and 10 mM EDTA for 15 min. Afterwards, tubes were vigorously shaken and supernatant, containing intraepithelial lymphocytes, was discarded. The procedure was repeated once more. After that, intestines were extensively
washed with RPMI-1640 with 5% FCS and cut into small pieces and incubated in RPMI containing 5% FCS and 0.3 mg/ml of collagenase IV (Sigma-Aldrich) and 0.1 mg/ml DNAse I (Sigma-Aldrich) for 15 min at 37 °C at constant shaking (200 rpm). The resulting cell suspension was collected and the procedure was repeated until complete intestine digestion was achieved. Then, cells were washed several times with RPMI-1640 and resuspended in 30% Percoll and overlaid on 70% Percoll. For analysis of myeloid cell populations, cells were used further directly without gradient. Gradient solutions were spun at 2,000 rpm for 20 min without braking and the interphase, containing mononuclear cells, was recovered. Cells were washed twice with RPMI-1640 and used for further manipulations. Peritoneal exudate cells were collected by washing peritoneal cavity with 10 ml of PBS. Splenocytes were made using 70 μm cell strainer (BD Bioscience), bone marrow cells were isolated by flushing the bone marrow from femurs with 10 ml of PBS/BSA. Red blood cells in splenocyte and bone marrow preparations were lysed with ACK lysis buffer. Mesenteric lymph nodes cells were prepared by organ digestion using collagenase/DNAse.

IgA ELISA

Murine feces were collected, weighed and resuspended in PBS in concentration 1 mg of feces per 10 μl of PBS. Suspensions were centrifuged at 13,000 rpm for 10 min and supernatant was collected for IgA ELISA. Mouse sera were prepared as previously described (32). 96-well plates were coated with anti-mouse Ig (H+L) (Southern Biotech) overnight at 4 °C. Plates were then blocked with 5%
PBS/BSA for 1 hr at room temperature and incubated with 100 μl of supernatants overnight at 4 °C. Goat anti-mouse IgA-AP (Southern Biotech) was used as detection antibody. pNPP (Sigma-Aldrich) was used as a substrate. Reaction was stopped by adding 50 μl of 3M NaOH.

Microbiota analysis

Contents from the distal part of the small intestine (ileum) were resuspended in 1 ml of lysis buffer (50 mM Tris-HCl, pH 8.0; 500 mM NaCl; and 50 mM EDTA and 4 % SDS) in Lysing Matrix B tubes (MP Biomedicals). Intestinal bacteria were lysed by mechanical disruption with a bead beater (BioSpec Products) for 1 min and further incubated at 70 °C for 15 min with gentle shaking by hand every 5 min. Supernatant was collected after centrifugation for 5 min at 14,000 rpm and the procedure was repeated once more. Pooled supernatant was mixed with 260 μl of 10M ammonium acetate and incubated on ice for 5 min, centrifuged for 10 min at 14,000 rpm. DNA was precipitated from supernatants by adding an equal volume of isopropanol to each sample and incubation on ice for 15 min. After centrifugation for 15 min at 14,000 rpm, nucleic acid pellets were washed once with 70 % ethanol and dissolved in 100 ml of TE buffer in the presence of RNAse A (2 μg/ml). For deep sequencing, 16S rRNA was amplified using BSR357 (5′- CCATCTCATCCCTgCgTgTCTCCgACTCAgNNNNTgCTgCCTYCCgTA) and BSF8 (5′- CCTATCCCCCTgTgCCTTggCAgTCTCAgAgAgTTTgATCCTggCTCAg). PCR
products were sequenced on a 454 GS FLX platform following the 454 Roche recommended procedures. Classification of bacteria was performed as previously described (37, 38). Microbiota composition was further quantified by Real-time PCR using strain specific primers (Table S1) and was normalized relative to eubacteria.

Induction of IgA switch in vitro

Splenic B cells were isolated using CD19 microbeads (Myltenyi Biotec). Purified B cells (10⁵ cells) were cultured for 5 days in the presence of LPS (25 μg/ml; Sigma-Aldrich), recombinant human TGFβ1 (2 ng/ml; RnD systems), recombinant mouse IL-4 (10 ng/ml; RnD systems), and recombinant mouse IL-5 (1,5 ng/ml; Ebioscience). On day 5, cells were harvested and stained for IgM and IgA. Frequencies of IgA positive cells were determined using flow cytometry (LSRFortessa; BD biosciences). For cocultures of B cells and dendritic cells, IgM⁺ B cells were purified from spleen using biotinylated anti-IgM (M41) antibody, followed by anti-biotin microbeads (Myltenyi Biotec). Mesenteric lymph node dendritic cells were purified as follows: lymph node was cut into small pieces and digested in the mixture of collagenase IV (Sigma-Aldrich) and DNAse (Sigma-Aldrich). Digested tissue was passed through 18 G and 25 G needles in order to obtain single cell suspension. Cells were washed twice with PBS/BSA and dendritic cells were isolated using anti-CD11c microbeads (Myltenyi Biotech) according to manufacturer’s instructions. Cocultures were performed in 96 well
plates with \(2 \times 10^5\) B cells and \(4 \times 10^4\) DC per well for 5 days. At day 5, IgA were measured in supernatants.

Real-time PCR

RNA from tissues and cells was isolated using TRI reagent (Sigma-Aldrich) according to manufacturer’s instructions. RNA (1 µg) was treated with RQ1 DNAse 1 (Promega Inc.) and cDNA was synthesized using Im-Prom II reverse transcriptase (Promega Inc.). Real-time PCR was performed using Brilliant II SYBR Green QPCR master mix (Agilent). PCR was performed using Stratagene Real-time PCR amplifier. All reactions were run using the following program: 95 °C 10 min; 50 cycles of 95 °C 30 sec, 60 °C 30 sec and 72 °C 30 sec. Sequences of primers are shown in Table S1.

Statistical analysis

Statistical analysis was done using two-tailed unpaired Student’s T-test unless otherwise stated. P-values (P< 0.05) were considered as statistically significant.
Fig. S1. Generation and phenotypic analysis of mice lacking LT\(\alpha\) and LT\(\beta\) in ROR\(\gamma\)\(^t\) cells. (A) Breeding scheme to generate mice lacking LT\(\alpha\) and LT\(\beta\) in T cells and in ROR\(\gamma\)\(^t\) ILC and T cells. LT\(\alpha_1\)\(\beta_2\) protein expression on CD19\(^+\) B cells (B) and CD3\(^+\) T cells (C) in spleen of WT, LT\(\beta\)\(^{\Delta\text{ILC,T}}\) and LT\(\alpha\)\(^{\Delta\text{ILC,T}}\), LT\(\alpha\)\(^{\Delta\text{T}}\) and LT\(\alpha\)\(^{-/}\) mice. Splenocytes (1x10\(^6\)) were activated with PMA (50 ng/ml) and anti CD40 (10 \(\mu\)g/ml) antibodies for 7 hours. Cells were stained with LT\(\beta\)R-hlgG, followed by donkey anti-human IgG (H+L) and surface markers. Expression of LT\(\alpha\) (D) and LT\(\beta\) (E) mRNA in sorted CD4\(^+\)IL7R\(\alpha\)\(^+\)lin(CD3/B220/CD11c)\(^-\) splenic ILC from WT, LT\(\beta\)\(^{\Delta\text{ILC,T}}\) and LT\(\alpha\)\(^{\Delta\text{ILC,T}}\), LT\(\alpha\)\(^{\Delta\text{T}}\) mice. (F) Development of mesenteric and inguinal lymph nodes in WT, LT\(\beta\)\(^{\Delta\text{ILC,T}}\) and LT\(\alpha\)\(^{\Delta\text{ILC,T}}\), LT\(\alpha\)\(^{\Delta\text{T}}\) mice. (G) Numbers of Peyer’s patches in WT, LT\(\beta\)\(^{\Delta\text{ILC,T}}\) and LT\(\alpha\)\(^{\Delta\text{ILC,T}}\), LT\(\alpha\)\(^{\Delta\text{T}}\) mice. (H) LT\(\alpha_1\)\(\beta_2\) expressed by ROR\(\gamma\)\(^t\) ILC is critical for ILF development in the gut. Horizontal sections of small intestine were stained for ROR\(\gamma\) (green) and B220 (red) and counterstained with DAPI (blue). Scale bar, 100\(\mu\)m. Original magnification \(\times\) 400. All data are representative of two or more independent experiments with \(n \geq 3\) mice. *\(P<0.05\), **\(P<0.01\), ***\(P<0.001\), as calculated by Students’ \(t\)-test.
Fig. S2. Lymphocyte populations in the lamina propria after ablation of LTα in T cells. (A) Lamina propria cell numbers in WT and LTαΔT animals. (B) IgM and IgA producing B cells in the CD45+ subset of lamina propria lymphocytes isolated from WT and LTαΔT animals. (C) Frequencies of various myeloid cell...
populations in live CD45⁺ lamina propria cells of WT and LTαΔT animals (right) as determined by surface expression of CD11c and CD11b (left). (D) Analysis of T cell subsets in CD45⁺ subset of lamina propria lymphocytes isolated from WT and LTαΔT animals. All data are representative of two independent experiments with n≥3. *P<0.05, **P<0.01, ***P<0.001, as calculated by Students’ t-test.
Fig. S3. Control of RORγt⁺ ILC lamina propria phenotype by LTα₁β₂ produced by RORγt⁺ ILC. (A) Cell numbers of CD45⁺lin(CD3/B220/CD11c)⁻ Thy1.2⁺ cells in the lamina propria of WT and LTβΔILC, T animals. Analysis of CD117 (B), IL-7Rα and CCR6 (C) expression on CD45⁺ lin⁻ Thy1.2⁺ cells in the lamina propria of WT and LTβΔILC, T animals. Lamina propria cells were gated on CD45⁺lin⁻Thy1.2⁺ and expression CD117, IL-7Rα and CCR6 was analyzed. All data are representative of at least two independent experiments with n≥3 mice. Error bars, SEM; *P<0.05, **P<0.01, ***P<0.001, as calculated by Student’s t-test.
Fig. S4. Analysis of lamina propria ILC compartment upon LTα ablation in RORγt+ cells. (A) Gating strategy for quantification of RORγt+ ILC located in the lamina propria. (B) Cell numbers of RORγt+ ILC in the lamina propria of WT and LTαΔILC, T mice. (C, D) CCR6 expression on RORγt+ ILC, gated as shown in A, in WT and LTαΔILC, T. (E) CD117 (c-Kit) expression on RORγt+ ILC, gated as shown in A, in WT, LTαΔT and LTαΔILC, T mice. All data are representative of two or more independent experiments with n≥3 mice. Error bars, SEM; *P<0.05, **P<0.01, ***P<0.001, as calculated by Student’s t-test.
Fig. S5. Role of TNFR1, TNFR2 and soluble lymphotoxin in the control of IgA induction and intestinal chemokine production. (A) Reduced fecal IgA levels in TNFR1 KO, TNFR2 KO and TNFR1, 2 KO animals. (B) Normal fecal IgA levels in TNF deficient mice. (C) Reduced fecal IgA levels in TNFR1 KO and TNFR2 KO mice reconstituted with WT bone marrow. (D) Normal fecal IgA levels in WT animals reconstituted with TNFR1 KO and TNFR2 KO bone marrow cells. (E) Chemokine expression in jejunum of WT and LTα^{ΔILC, T} animals. (F) Chemokine expression in jejunum of WT and LTβ^{ΔILC, T} animals. (G) Expression of CCL20 in jejunum of WT, LTα^{ΔILC, T}, LTβ^{ΔILC, T} and LTα^{ΔT} animals. (H) Lamina propria lymphocyte cell numbers in WT, LTβ^{ΔILC, T} and LTα^{ΔILC, T} mice. All data are representative of two or more independent experiments with n≥3 mice. Error bars, SEM; *P<0.05, **P<0.01, ***P<0.001, as calculated by Student’s t-test.
Fig. S6. B cell development upon LT ablation in RORγt+ cells. (A, B) B1 (CD19+IgM^{high}IgD^{low}) and B2 (CD19+IgD^{high}IgM^{low}) cell numbers in peritoneal cavity of WT, LTβ^{ΔILC,T} and LTα^{ΔILC,T} mice. (C) Frequencies of pre/pro-B (B220⁺IgM⁻), immature (B220^{lo}, IgM⁺) and mature recirculating (B220^{hi}, IgM⁺) B cells in bone marrow of WT and LTβ^{ΔILC,T} animals. (D) Frequencies of follicular (B220⁺CD21⁺CD23⁺) and marginal zone (B220⁺CD21⁺CD23⁻) B cells in spleen of WT and LTα^{ΔILC,T} animals. (E) Frequencies of IgM^{hi}IgD^{lo}, IgM⁺IgD⁺ B cells in spleen of WT and LTα^{ΔILC,T} animals. (F) B cells were isolated from spleen of WT and LTα^{ΔILC,T} animals and were cultured for 5 days in presence of lipopolysaccharide (LPS) only or LPS, rhTGFβ, rmIL-4 and rmIL-5. Cells were stained with B220 and IgA and the frequency of IgA⁺ cells was determined by FACS analysis.
Fig. S7. Analysis of B cell proliferation and AID expression in the lamina propria in LTβΔILC, T mice. (A) Numbers of lamina propria IgM+ B cells in LTβΔILC, T and LTβΔILC, T TCRαβ-/- mice. (B) AID expression in lamina propria lymphocytes isolated from the small intestine of LTβΔILC, T and LTβΔILC, T TCRαβ-/- mice. (C) Lamina propria cells were isolated from the small intestine of WT and LTβΔILC, T mice and stained for surface CD45, CD19, IgM and intracellularly for Ki67. Dead
cells were excluded using fixable Viability Dye eFluor 450. All data are representative of two independent experiments. Error bars, SEM; *$P<0.05$, **$P<0.01$, ***$P<0.001$, as calculated by Student’s t-test.
Fig. S8. Analysis of cell populations in gut-associated lymphoid tissues upon LT ablation in RORγt+ cells. (A) Representative flow cytometry dot plots of live CD45+MHCII+ lamina propria lymphocytes in WT and LTαΔILC, T animals. (B) Cell numbers of various dendritic cell populations in the lamina propria of WT and LTαΔILC, T mice. (C) Representative flow cytometry dot plots of
CD11c⁺CD103⁺ lymphocytes from mesenteric lymph nodes in WT and LTβ^{ΔΙΛC, T} animals. (D) Cell numbers of CD11c⁺CD103⁺ and CD11c⁺CD103⁻ in mesenteric lymph nodes of WT and LTβ^{ΔΙΛC, T} mice. (E) Expression of CCR9 and α₄β₇ in splenic CD4⁺TCRβ⁺CD44⁺ T cells in WT and LTα^{ΔΙΛC, T} animals. (F). Cellular numbers of CD4⁺TCRβ⁺CD44⁺CCR9⁺α₄β₇⁺ T cells in spleen of WT and LTα^{ΔΙΛC, T} mice. All data are representative of two independent experiments with n≥3 mice. Error bars, SEM; *P<0.05, **P<0.01, ***P<0.001, as calculated by Student’s t-test.
Fig. S9. Induction of IgA production in mice lacking LTα in RORγt+ cells. (A)

Numbers of live lamina propria B cells (CD45+IgM+B220+) in the LP of untreated or anti-CD40-treated LTαΔILC,T 2 days after single antibody injection. (B)

Numbers of live lamina propria T cells (CD45+CD3+) in the lamina propria of untreated or anti-CD40-treated LTαΔILC,T 2 days after single antibody injection.

(C) CXCL13 expression in small intestine of anti-CD40-treated WT and LTαΔILC,T 2 days after single antibody injection. (D) AID expression in lamina propria lymphocytes isolated from anti-CD40-treated WT and LTαΔILC,T 2 days after single antibody injection. (E) Analysis of IgA producing cells in colons of dextran sodium sulfate (DSS) -treated WT, LTαΔT, LTαΔILC,T, LTβΔILC,T, LTαΔT mice.

Immunofluorescent analysis of colon of WT, LTαΔT, LTαΔILC,T, LTβΔILC,T, LTαΔT.
mice at day 8 after DSS treatment. Mice were treated with 1.5% DSS in drinking water for 5 days and then put back on normal drinking water. On day 8, colons were collected and analyzed by immunofluorescence on the presence of IgA⁺ cells. IgA⁺ cells (green) were observed only in WT, LTα⁺ T, LTβ⁺ ILC, T animals. All data are representative of two independent experiments with n≥3 mice. Error bars, SEM; *P<0.05, **P<0.01, ***P<0.001, as calculated by Student’s t-test.
Fig. S10. Soluble and membrane-bound lymphotoxins expressed by innate lymphoid cells distinctly orchestrate intestinal homeostasis. This study identifies that ILC via their production of soluble and membrane-bound lymphotoxin regulate distinct pathways of IgA induction and, thereby, orchestrate intestinal homeostasis. The nonredundant pathway controlled by soluble LTα is shown on the right.
Table S1. Primer sequences used for Real-time PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>AID</td>
<td>gCCACCTTCgCAACAAgTCT</td>
<td>CCgggCACAgTCATAgCAC</td>
</tr>
<tr>
<td>CXCL13</td>
<td>ggCCACggTATTCTggAAgC</td>
<td>gggCgTAACCTgAATCCgATCTA</td>
</tr>
<tr>
<td>CCL21</td>
<td>ATCCCGgCAATTCTgTTCTC</td>
<td>ggggCTTggTTTCCCTggg</td>
</tr>
<tr>
<td>MAdCAM-1</td>
<td>CTgAgCCCTACATCCCTgACCT</td>
<td>gCTTCACAgAgTAgCTCCCAg</td>
</tr>
<tr>
<td>LTα</td>
<td>ATTCTAAAgAAACCCCAgAATTg</td>
<td>CAACCTTCCCTgTTCCCA</td>
</tr>
<tr>
<td>LTβ</td>
<td>ACgTCgggTTgAgAAgATCA</td>
<td>TggATCTggTgTAgAATCCg</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>ggCTCCAgaACATTTACCAgA</td>
<td>ACCCTTgAAACAgATCAATCTCCA</td>
</tr>
<tr>
<td>CCL20</td>
<td>CTTCACTgCCATCTtgTCTT</td>
<td>ggTACTgCTggCTCACTCTCT</td>
</tr>
<tr>
<td>CD40L</td>
<td>CCTgCTgAACTgTgAggAgA</td>
<td>CTTCgCTTCAACAgTgTgCT</td>
</tr>
<tr>
<td>INOS</td>
<td>ATgCTgCCACCTTggTTCAC</td>
<td>ggCCACCCACCTCCAgaTAgC</td>
</tr>
<tr>
<td>β-actin</td>
<td>CTTCCTgAGCgCAAGTACTCTgTg</td>
<td>TAAAACgCAGCTCAgTAACAgTCC</td>
</tr>
<tr>
<td>Eubacteria</td>
<td>ACTCTACgggAgCgCAgAgT</td>
<td>ATTACCgCggCTgCTggC</td>
</tr>
<tr>
<td>Segmentous fillament bacteria</td>
<td>gACgCTgAggCATgAgAgCAT</td>
<td>gACggCACggATTgTTATTCg</td>
</tr>
<tr>
<td>Lactobacteria</td>
<td>AgCAGTAaggAATCTTCCA</td>
<td>CACCgCTACACATggAg</td>
</tr>
<tr>
<td>Clostridales</td>
<td>ACTCCTACgggAggCAgC</td>
<td>gCTTTATTgTCAggTACCgTCAT</td>
</tr>
<tr>
<td>Bacteroidetes</td>
<td>ggTTCTgAggAAggTCCC</td>
<td>gCTgCCTCCCGgTAggAgT</td>
</tr>
</tbody>
</table>
References

30. See supplementary materials on Science Online.

