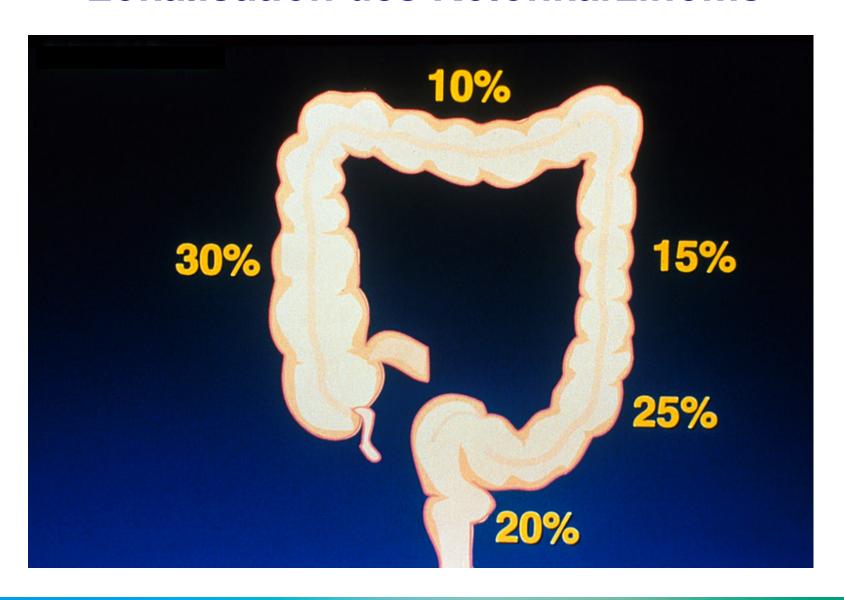
Kolorektales Karzinom

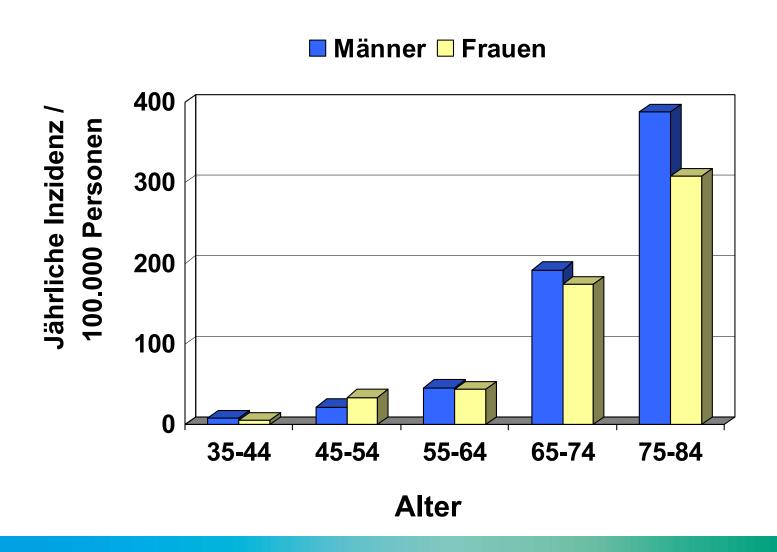
R.Wiest M.D. UVCM Inselspital, Bern

KLINIK UND EPIDEMIOLOGIE

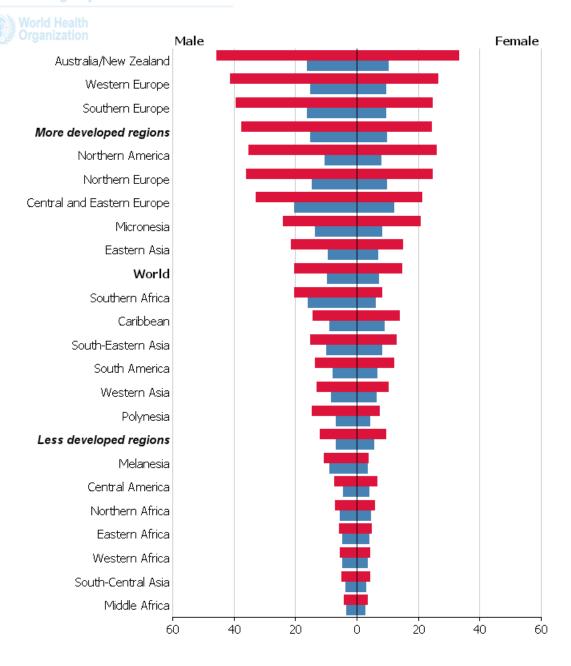
Häufigkeit des kolorektalen Karzinoms


- Deutschland: ca. 70 000 Neuerkrankungen
 - meist > 50. Lebensjahr
 - Häufigkeit seit ca. 1960 verdreifacht
- Zweithäufigster Krebs bei Frauen (nach Brustkrebs) und Männern (nach Prostatakrebs)
- Individuelles Lebenszeitrisiko ca. 6%

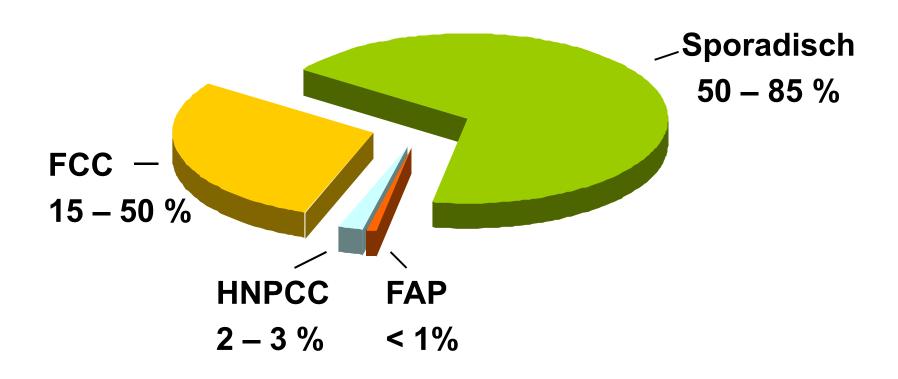
Die klinischen Manifestationen des Kolonkarzinoms variieren in Abhängigkeit von der Lokalisation


	Sichtbare Blutungen	Veränderte "Stuhlge- wohnheiten"	Obstruktion	Okkultes Blut
Rechtes Kolon	Ø oder +	Ø	Ø oder +	++
Transv. Kolon	+	+	++	+
Sigmoid. Kolon	++	++	+	Ø oder +
Rektum	+++	+++	Ø oder +	Ø

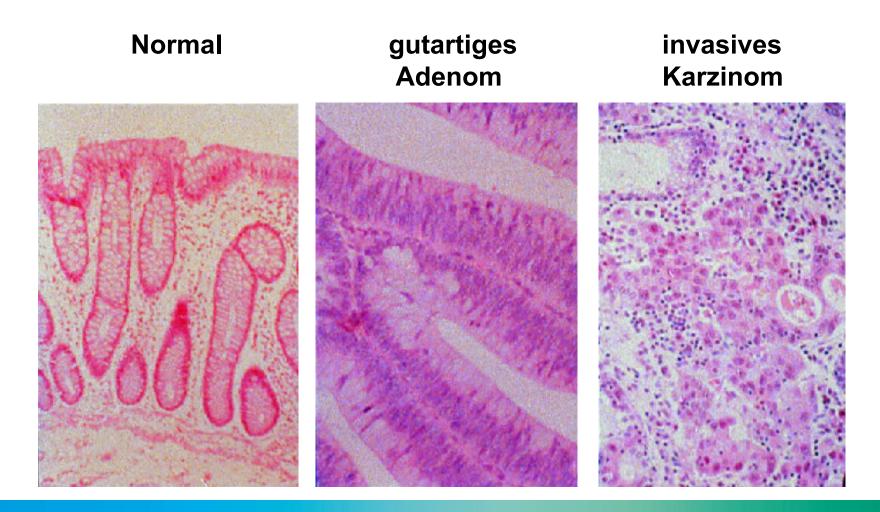
Allgemeinsymptome: Gewichtsabnahme, Kachexie


Lokalisation des Kolonkarzinoms

Die Inzidenz des Kolorektalen Karzinoms wächst mit dem Alter

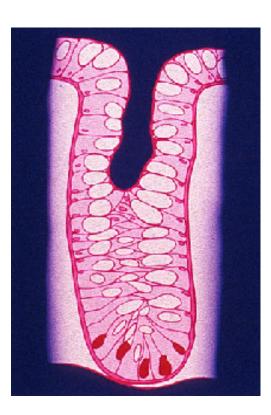


Inzidenz und **Mortalität** beim KRK

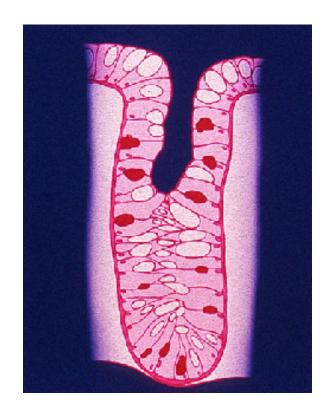


EINTEILUNG UND GENETIK

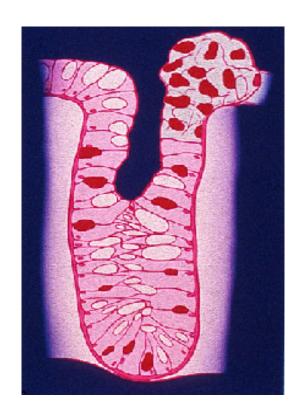
Arten des Kolorektalen Karzinoms



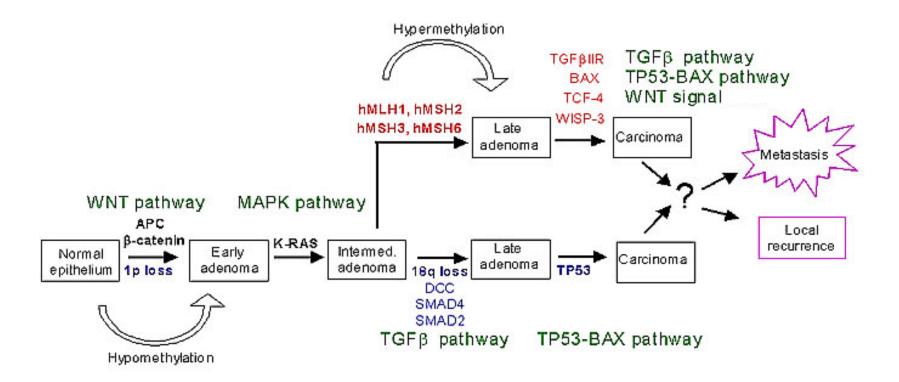
Die Kolonmukosa zeigt progressive strukturelle Änderungen im Übergang zu gut- und bösartigen Neoplasien



Adenom-Entwicklung


Normal

Hyperproliferation



Adenom

Adenom - Karzinom - Sequenz

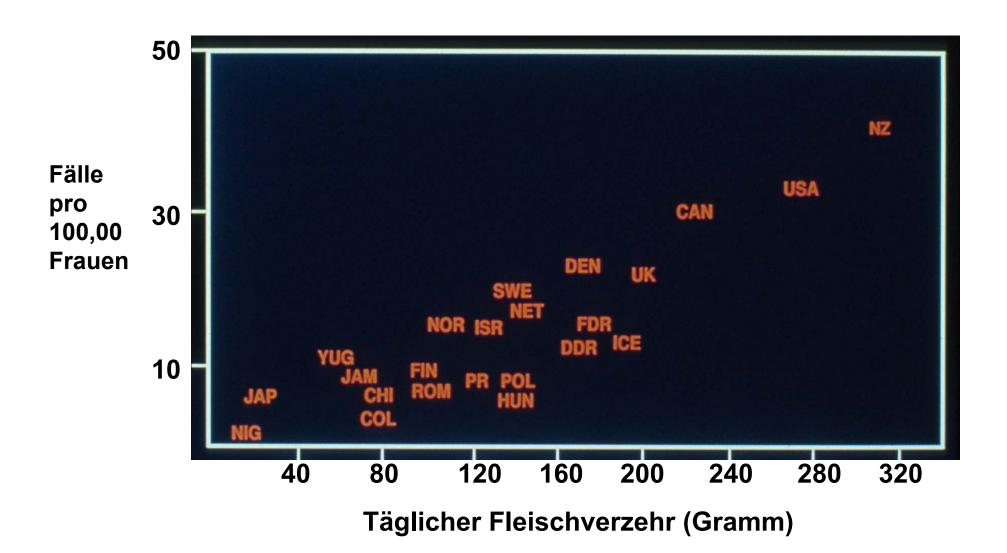
Microsatellite instable (MSI) tumors

Chromosome instable (CIN) tumors

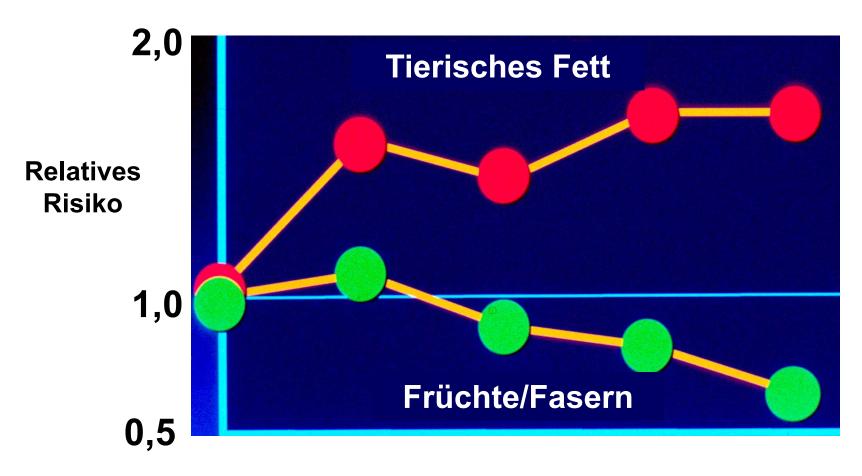
Familiäre adenomatöse Polyposis (FAP)

- Obligate Präkanzerose
- Klassische Form oder attenuierte Form
- Erste Adenome treten normalerweise im 2. Lebensjahrzehnt auf
- Im mittleren Alter von 36 Jahren ist mit einem Karzinom zu rechnen

Vor welchem Alter ist das Auftreten von Dickdarm-Krebs hinweisend für erblichen Darmkrebs, unabhängig von der Familienanamnese ?

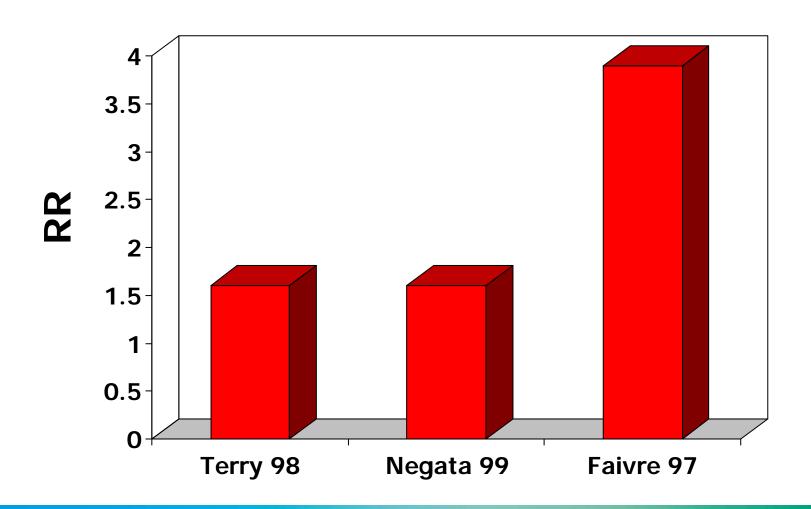

- a) 90 Jahre
- b) 80 Jahre
- c) 70 Jahre
- d) 60 Jahre
- e) 50 Jahre

Hereditäre Non-Polyposis-Colorektale Carcinome (HNPCC)


- Genetischer Defekt in DNA-Reparaturmechanismen
- Amsterdam-Kriterien:
 - Wenigstens 3 Familienangehörige mit HNPCC-Manifestation
 - ✓ Wenigstens über 2 Generationen
 - Mindestens ein 1. Grad Verwandtes Familienmitglied
 - ✓ Manifestationsalter < 50. Lebensjahr</p>
 - Keine FAP
- Lebenszeit-Tumorrisiko: 80-90%
- Auch erhöhtes Risiko für Endometrium-, Ovar-, Magen-Karzinom

PRÄVENTION UND FRÜHERKENNUNG

Kolorektales Karzinom



Ernährung beim Kolon/Rektum-Karzinom

Täglicher Verzehr

Relatives Risiko bei Rauchern für die Entwicklung eines kolorektalen Karzinoms

Körperliche Aktivität, Adipositas - Einfluss auf Kolonneoplasien -

47.723 männliche Mitarbeiter im Gesundheitswesen

RR

Aktivität hoch

0,53(0,32-0,88)

"Waist/Hip Ratio" > 0,99

3,41 (1,52 - 7,66)

Giovanucci, 1995

Sekundärprävention durch körperliche Aktivität

832 Patienten mit Kolonkarzinom UICC III Aktivität gemessen in metabolischen Stundenäquivalenten (MET-h) (z.B. Spazieren: 3/h; Joggen: 7/h etc.)

Aktivität / Woche	Relatives Risiko für ein Rezidiv
< 3 MET-h	1
18 – 26,9 MET-h	0,51 (95%-CI 0,26 – 0,97)
> 27 MET-h	0,55 (95%-CI 0,33 – 0,91)

J.A. Meyerhardt, 2006

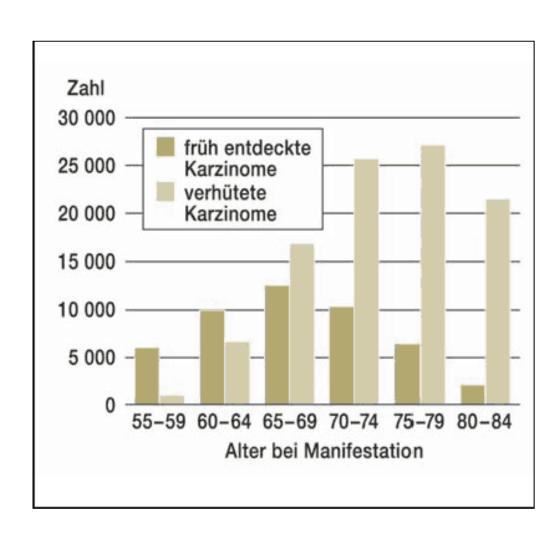
"Lifestyle"- Empfehlungen

- Regelmäßige körperliche Aktivität
- Gewichtsreduktion bei Übergewicht (Ziel BMI ≤ 25kg/m²)
- Nikotinkarenz
- Hohe Ballaststoffaufnahme (30 g/Tag)
- Rotes bzw. verarbeitetes Fleisch nicht täglich
- 5 Portionen Obst/Gemüse pro Tag
- Limitierung des Alkoholgenusses
- Folsäure- und Kalziumreiche Ernährung

Fäkal-okkulter- Stuhltest (FOBT) Einfluss auf das Überleben

- Guaiac Rosin: Hämoglobin färbt blau
 - Einfach, billig, effektiv
- Empfehlung: jährlich (3 Stuhlproben)
- Jeder positive Test: komplette Koloskopie

Reduktion Mortalität um bis zu 33%


Wieviele Darmkrebsfälle konnten (vermutlich) seit Einführung der Vorsorgekolonoskopie In Deutschland verhindert werden?

- a) 5.000
- b) 10.000
- c) 50.000
- d) 100.000
- e) 1.000.000

Ergebnisse der Vorsorgekoloskopie in Deutschland

Empfohlen:
Vorsorgekoloskopie ab
55. Lebensjahr

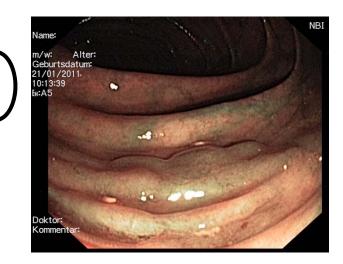
Hochrechnung basierend auf 2,82 Millionen Einträgen von Früherkennungskoloskopien im Alter von 55 – 84 Jahren in Deutschland

Langanhaltende Reduktion des Kolonkarzinom-Risikos durch Screening-Koloskopie

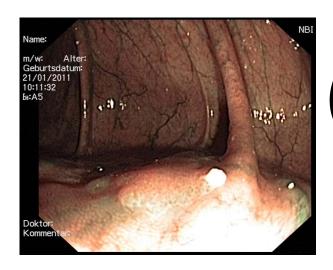
380 Patienten mit unauffälliger Screen-Koloskopie 485 Kontrollen ohne Screen-Kolonoskopie

	OR (95 % CI)
Überhaupt jemals	0.26 (0.16 – 0.40)
1 - 2 Jahre	0.16 (0.07 - 0.36)
3 - 4 Jahre	0.29 (0.13 – 0.68)
5 – 9 Jahre	0.25 (0.09 - 0.69)
10 – 19 Jahre	0.33 (0.12 – 0.91)
≥ 20 Jahre	0.46 (0.16 – 1.32)

H. Brenner, 2006 26


Risikogruppen

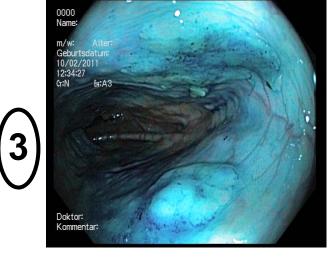
	Zeitpunkt der ersten/nächsten Vorsorgekoloskopie	
Erstgradig Verwandte von Patienten mit Dickdarmkrebs	10 Jahre vor Erkrankungsalter des Patienten	
Erstgradig Verwandte von Patienten mit Adenom		
Patienten mit Adenom	Je nach Zahl, Größe und Histologie der Adenome (i.d.R. 3 bis 5 Jahre)	
Patienten mit Colitis ulcerosa	Je nach Ausdehnung i.d.R. 8 – 15 Jahre nach Erkrankungsbeginn	
Patienten mit genetischer Disposition z.B. HNPCC, FAP,	Separate Richtlinien je nach Art der Disposition	


Anamnese 67 j. Patienten - Vorsorgekoloskopie

07/10 Polypektomie von 7 Polypen Sigma und Colon transv. Ambulant FA: Tante mit KRK (i.Alter 80. Lj.); Schwester multiple Polypen ?

01/11 EV zur Polypektomie residueller sessiler Polypen im Coecum

20 mm gegenüber IC-Klappe



10 mm aboral coecal

Histo: serratierte Adenome ohne Dyplasie

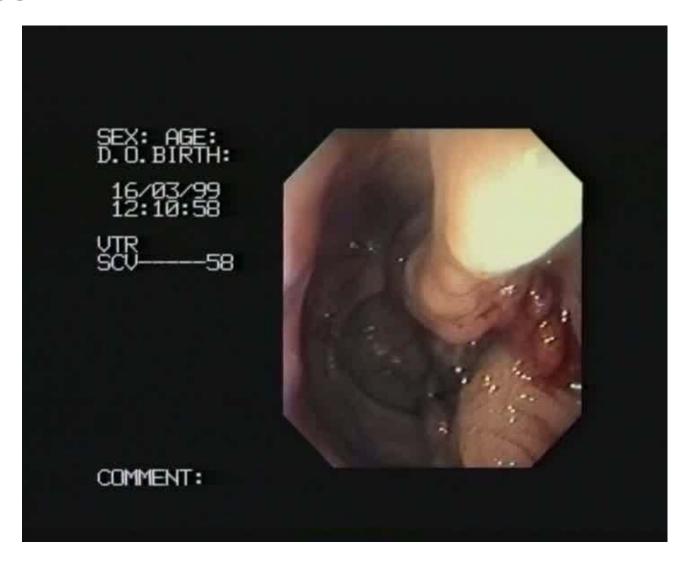
Abtragungsstelle coecal Biopsie: Fragmente von serratiertem Adenom 10.02.2011: Re-Coloskopie mit Chromoendoskopie

Nur nach Chromoendoskopie sichtbar: Colon ascendens

8 mm Grösse

Histo: sessil serratierte Adenome ohne Dyplasie

Vorsorgeempfehlungen bei FAP


Grenzalter	Massnahme	Intervall [Jahre]
Ab 10. Lebensjahr	Humangenetische Beratung	
Ab 10. Lebensjahr	Rektosigmoidoskopie bei Nachweis von Adenomen Koloskopie	1
Ab 15. Lebensjahr	<i>Sonographie</i> der Schilddrüse (Frauen)	1
25 30. Lebensjahr	<i>Gastroduodenoskopie</i> mit besonderer Inspektion der Papille	3
	Bei Adenomnachweis Kontrolle in Abhängigkeit vom Schweregrad	~ 1

Vorsorgeempfehlungen bei HNPCC

- Patienten mit Risiko für HNPCC:
- Komplette Kolonoskopie jährlich ab 25. Lebensjahr; auf jeden Fall 5 Jahre vor Alter Indexpatient
- Frauen: zusätzlich zur Routine-Gynäkolog. Vorsorge transvaginaler Ultraschall (Endometrium-,Ovar-CA)

DIAGNOSTIK

Video

Therapierelevante Diagnostik (Staging) beim kolorektalen Karzinom

Frage: kurative Therapie / R0-Resektion möglich?

- → Entsprechende Diagnostik veranlassen
- a) Lokalbefund?
 - Koloskopie mit Biopsien / Rektoskopie,
 Endosonographie (Rektum)
 - Bei nicht passierbarer Stenose:Kolon-KE oder virtuelle Kolonographie ?
- b) Fernmetastasen? Leber 75%, Lunge 18%, Peritoneum 12%, Skelett 9%
 - CT oder MR, ggf. PET
 - (KM-) Sonographie (transabdominell, intraoperativ)

TNM System

T1 Tumor infiltriert Submucosa

T2 Tumor infiltriert Muscularis Propria

T3 Tumor infiltriert
Subserosa
perikolisches
Fettgewebe

Tumor perforiert
viszerales (T4a)
Peritoneum o. infiltriert
andere Organe (T4b)

N₀ keine regionären Lymphknotenmet. **N1** Metastasen in 1-3 regionären LK 1 LK N₁a 2-3 LK N₁b Satelliten in der Subserosa ohne LK N₁c **N2** Metastasen in 4 o. mehr regionären LK 4-6 LK N2a ≥ 7 LK N2b

M0 Keine Fernmetastase

M1 Fernmetastasen

M1a Ein Organ

M1b > ein Organ oder Peritoneum

Stadienabhängige 5-Jahres-Überlebensraten bei Rektumkarzinom

Stadium UICC	TNM	5-Jahres- Überlebensrate (%)
	T1N0	100
I	T2N0	90
II	T3N0	69-78
II	T4N0	69
III	TxN1	61
III	TxN2	39
IV	TxNxM1	15-20

Kolorektale Karzinome: Bildgebung

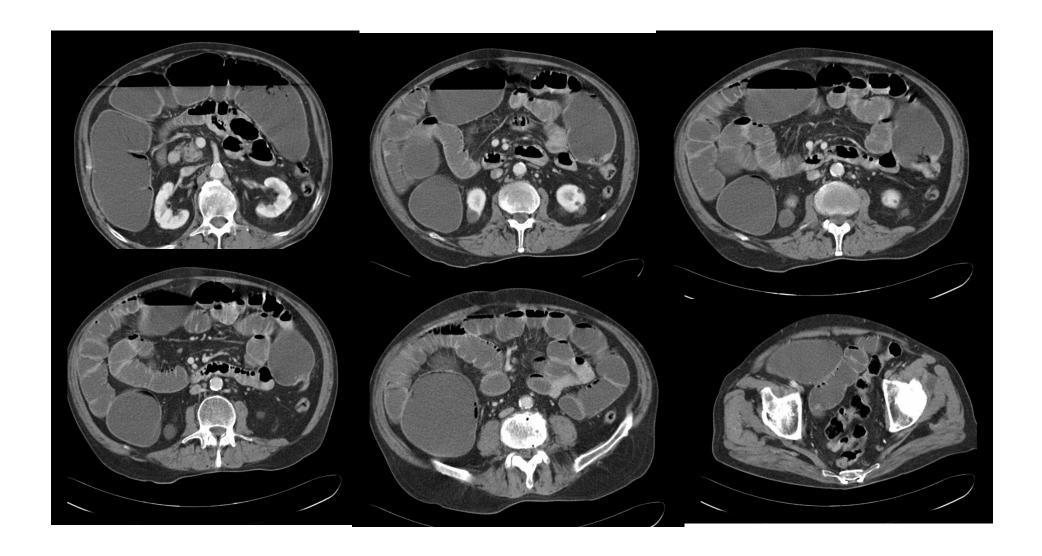
Der Nachweis des Primärtumors geschieht endoskopisch mit Biopsie, keine zusätzliche Bildgebung hierzu erforderlich

Zumeist:

Staging bei endoskopisch verifiziertem Ca

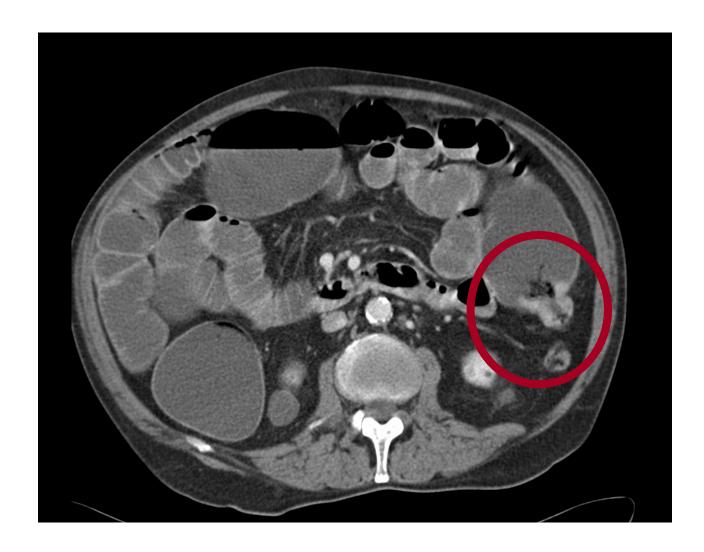
Selten:

lleussymptomatik, primäre Diagnostik mittels CT


Alter: 74 Jahre, m

Klin. Angaben: AVK, fem-fem-cross-over-Bypass

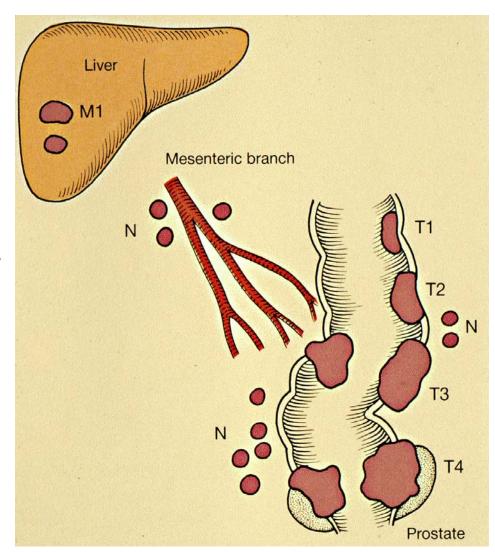
vor 10 Jahren,


heftige Abdominalschmerzen

Fragestellung: Mesenteriale Ischämie? BAA?

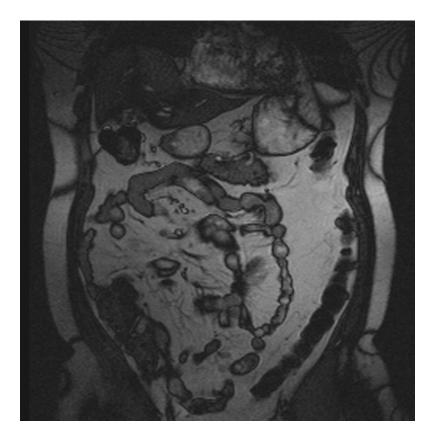
Diagnose?

- a) Invagination?
- b) M. Crohn?
- c) Descendens-Carcinom?
- d) Divertikulose?
- e) Aneurysma?



Kolonkarzinom - Metastasierung - Staging

 N_0 = keine LK-Metas


 $N_1 = 1-3$ LK-Metas

 $N_2 = \ge 4$ LK-Metas

Tiefenausdehnung mit Schichtbildverfahren methodisch derzeit nicht definierbar, da Darmwandschichten nicht differenziert werden können

CT

Staging

T: EUS

beim Rektum-Ca einsetzbar und sinnvoll.
Weiter oben nicht möglich. Große Tumore
(T3/4) mit CT regelhaft erkennbar, keine
zuverlässige T-Kategorisierung, da die
Wandschichten nicht differenziert werden können.

CT sinnvoll, um Infiltration in Nachbarorgane etc. präoperativ nachzuweisen. CT wird wegen Lebermetastasen ohnehin durchgeführt.

NICHTOPERATIVE THERAPIE

Therapiesituationen bei Tumoren

Palliativ: Behandlung mit dem Ziel, die (inkurable)

Erkrankung aufzuhalten oder zumindestens

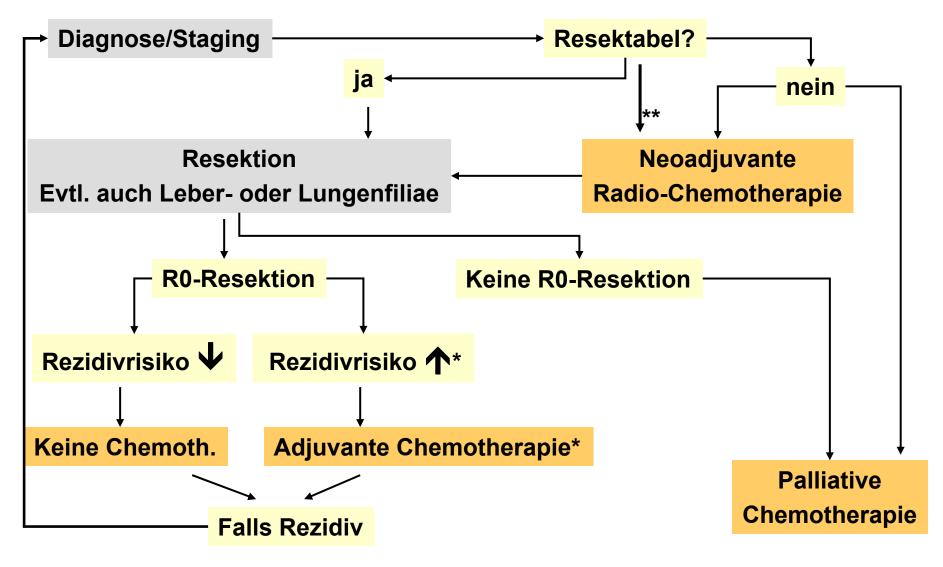
die Symptome zu lindern.

Adjuvant: Behandlung mit dem Ziel, vermutete aber

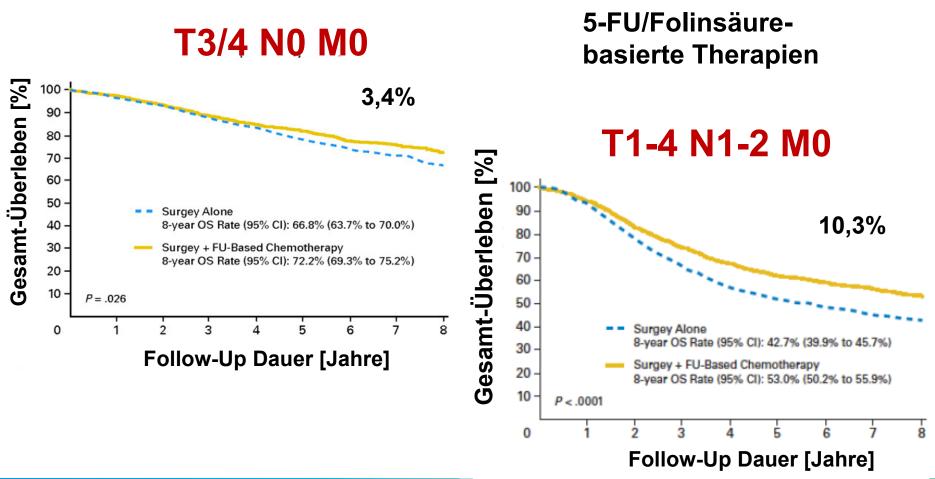
nicht nachweisbare Restzellen nach kurativer

Operation zu eliminieren.

Neoadjuvant: Behandlung mit dem Ziel, primär nicht oder


wenig aussichtsreich kurativ operable

Tumoren zu reduzieren, um eine kurative


Therapie zu ermöglichen / im Ergebnis zu

verbessern.

Therapiesituationen beim kolorektalen Karzinom

Adjuvante Therapie beim Kolonkarzinom effektiv

Stadienadaptierte adjuvante Therapie beim Kolonkarzinom

UICC I (T1/2 N0 M0) **Keine adjuvante Therapie**

UICC II

(T3/4 N0 M0)

Adjuvante Chemotherapie in ausgewählten

Risikosituationen zu erwägen

UICC III

(T1-4 N1-2 M0)

Adjuvante Chemotherapie ist Standard

UICC IV

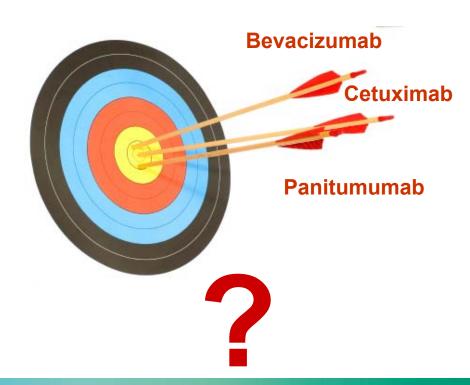
(T1-4 N1-2 M1)

Nach vollständiger Metastasenresektion:

Adjuvante Chemotherapie kann erwogen

werden

Palliative Therapie des kolorektalen Karzinoms


	Kosten / 8 Wochen (\$)	Verlängerung des Überlebens (Monate, Median)		
5-FU				
Mayo	63	<u> </u>		
Roswell-Park	304	8 → 12		
LV5FU2	263	J		
Oxaliplatin / Irinotecan				
Irinotecan	9.497)		
IFL	9.539	12 → 16		
Folfiri	9.381	> 12 7 10		
Folfox	11.889			
Antikörper				
Folfiri + Bevacizumab	21.399			
Folfox + Bevacizumab	21.033			
Irinotecan + Cetuximab	30.790	16 → 20 (24)		
Folfiri + Cetuximab	30.675	J		

NEUE: "Targeted Therapy"

<u>bisherige</u> <u>Chemotherapie</u>

Neu

Ziele

Anti-Proliferation

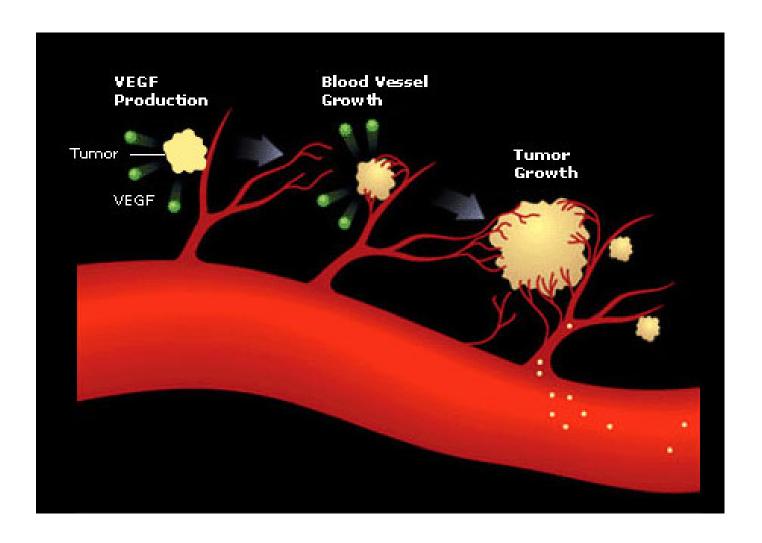
z.B.: **EGFR**, B-Raf, BCR-ABL, PDGFR

Cetuximab / Panitumumab

= Erbitux / Vectibix

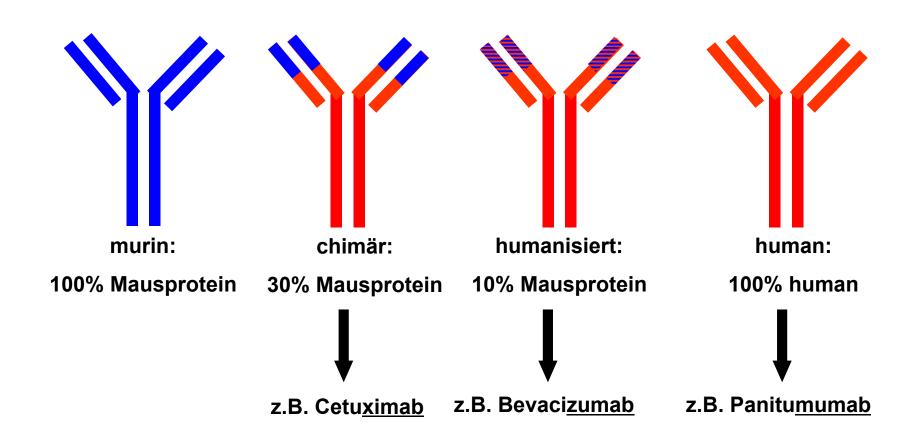
Apoptose

z.B.: BCL-2, mTOR, Caspasen


Angiogenese

z.B.: **VEGFR**, Cox-2

Bevacizumab


= Avastin

Hintergrund II: Tumor-Angiogenese

Strategie: Gezielter Angriff...

...durch monoklonale Antikörper (-mab)

Zieladaptierte (Chemo-)Therapie bei Metastasen

Primär resektable Leber- und/oder Lungenmetastasen

Operation, ggf. (neo-) adjuvante Therapie

- Leber- und Lungenmetastasen, die potenziell nach Ansprechen auf eine neoadjuvante Therapie resektabel sein könnten
- Tumorbedingte Symptome/Organkomplikationen oder rascher Progress

Intensivierte systemische Therapie

Multiple Metastasen ohne Option für Resektion nach Metastasenrückbildung, ohne tumorbezogene Symptome/ Organkomplikationen und/oder schwerer Komorbidität

Weniger intensive systemische Therapie

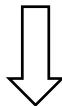
TAKE HOME MESSAGE

- >Alarmzeichen!?
- > Familienanamnese
- >Screening: FOBT, Vorsorgekoloskopie
- **➢ Diagnostik: guter Radiologe**
- **≻**Therapie: at best R0-Resektion oder

Beste Therapie = gute Prophylaxe

DANKE für die AUFMERKSAMKEIT

Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials


Peter M Rothwell, Michelle Wilson, Carl-Eric Elwin, Bo Norrving, Ale Algra, Charles P Warlow, Tom W Meade

Lancet 2010; 376: 1741-50

Background:

- High-dose aspirin (≥500 mg daily) reduces long-term incidence of colorectal cancer, but
 - adverse effects might limit its potential for long-term prevention
- long-term effectiveness of lower doses (75-300 mg daily) is unknown

Assessment of effects of aspirin on incidence and

mortality due

to colorectal cancer in relation to dose, duration of

Methods:

- follow up four randomised trials of aspirin versus control in primary (Thrombosis Prevention Trial, British Doctors Aspirin Trial) and secondary (Swedish Aspirin Low

Dose Trial, UK-TIA Aspirin Trial) prevention of vascular events

+

one trial of different doses of aspirin (Dutch TIA Aspirin Trial)

→ effect of aspirin on risk of colorectal cancer over 20 years during

and after the trials by analysis of pooled individual

Baseline clinical characteristics of patients at randomisation, details of scheduled treatment and of post-trial follow-up

A total of 14 033 patients were randomly assigned to aspirin or control in TPT, SALT, UK-TIA, and BDAT

	Thrombosis Prevention Trial	Swedish Aspirin Low Dose Trial	Dutch TIA Aspirin Trial*	UK-TIA Aspirin Trial	British Doctors Aspirin Tria
Aspirin comparison	75 mg daily vs placebo	75 mg daily vs placebo	283 mg vs 30 mg daily	300 mg vs 1200 mg daily vs placebo	500 mg daily vs control
Patients (active/control)	2545/2540	676/684	1231/1224	811/821/817	3429/1710
Placebo controlled and double-blind	Yes	Yes	Yes	Yes	No
Recruitment period	1989-92	1984-89	1986-89	1979-85	1978-79
Year original trial completed	1997	1990	1990	1986	1984
Median (range) duration of scheduled treatment in original trial (years)	6-9 (4-3-8-6)	2.7 (1.0-5.3)	2-6 (1-0-4-3)	4-4 (1-0-7-1)	6-0 (5-0-6-0)
Patients with scheduled duration of trial treatment ≥ 2·5 years (active/control)	2545/2540	444/468	648/639	684/653/702	3429/1710
Patients with scheduled duration of trial treatment ≥5 years (active/control)	2207/2219	10/9	0/0	321/312/316	3429/1710
Patients informed of treatment allocation at end of original trial	Yes	Yes	Yes	No	Open throughout
Methods of post-trial follow-up	Death certification, cancer registration	Death certification	Death certification, record review, patient contact ³⁴	Death certification, cancer registration	Death certification, cancer registration
Year post-trial follow-up extended to	2009	2007	2003	2006	2002
Mean (SD) age at randomisation (years)	57-5 (6-7)	66-9 (7-1)	65-3 (10-1)	60-3 (9-0)	61-6 (7-0)
Proportion male	100-0%	65.8%	65.0%	73-0%	100.0%
Proportion of current smokers at randomisation	41.2%	27.0%	45.5%	53.0%	31.0%

Table 1: Characteristics of trials studied and details of post-trial follow-up

Meta-analysis of effect of aspirin on long-term risk of death due to colorectal cancer

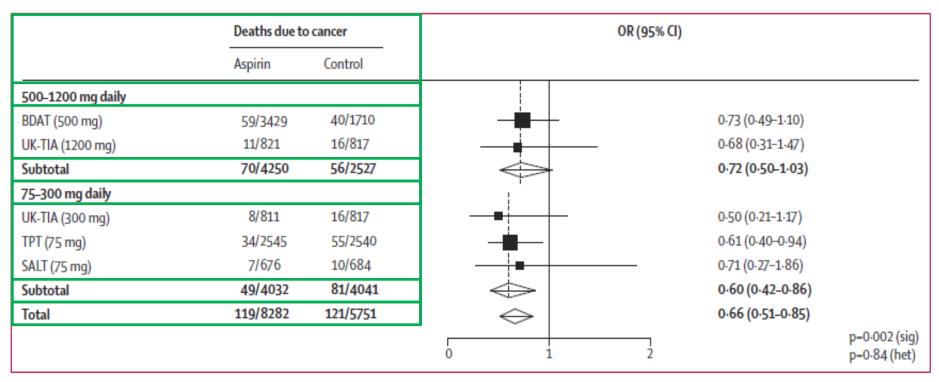


Figure 1: Meta-analysis of effect of aspirin on long-term risk of death due to colorectal cancer in randomised trials of aspirin versus control

All randomised patients are included, irrespective of scheduled duration of trial treatment. The overall pooled estimate is adjusted to correct for double-counting of the
control group of the UK-TIA Asprin Trial, which is included in both of the separate aspirin-dose subanalyses. BDAT=British Doctors Aspirin Trial. TPT=Thrombosis

Prevention Trial. SALT=Swedish Aspirin Low Dose Trial.

Pooled analysis of the effect of low-dose (75-300 mg) aspirin versus control

(A) all randomised patients

(B) duration of trial treatment ≥2·5 years

(C) duration of trial treatment ≥5 years

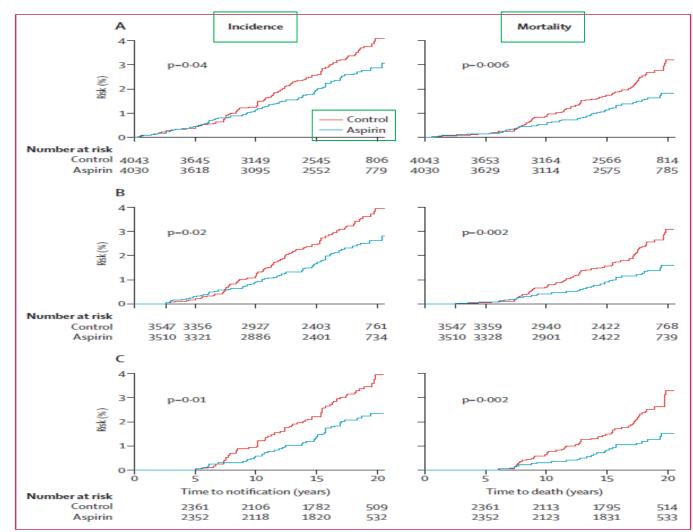


Figure 2: Pooled analysis of the effect of low-dose (75–300 mg) aspirin versus control
The effect on subsequent incidence and mortality due to colorectal cancer in all randomised patients (A) in the
Thrombosis Prevention Trial, the Swedish Aspirin Low Dose Trial, and the UK-TIA Aspirin Trial (lower-dose aspirin
versus control); in those with scheduled duration of trial treatment ≥2-5 years (B); and in those with scheduled
duration of trial treatment ≥5 years (C).