Journal club

Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis

Simon Yona,^{1,6,7} Ki-Wook Kim,^{1,6,8} Yochai Wolf,^{1,6} Alexander Mildner,¹ Diana Varol,¹ Michal Breker,¹ Dalit Strauss-Ayali,¹ Sergey Viukov,² Martin Guilliams,^{3,9} Alexander Misharin,⁴ David A. Hume,⁵ Harris Perlman,⁴ Bernard Malissen,³ Elazar Zelzer,² and Steffen Jung^{1,*}

Immunity 38, 79–91, January 24, 2013

Francesca Ronchi

June, 21st 2013

Background

Modified from Geissmann, F., Science 2010

Resident macrophages have a dual origin

Ly6C⁻ YFP⁺ monocytes give rise to macrophages in peripheral tissues

Cx3cr1^{creER}:R26-rfp (+ Tamoxifen) gated on CD11b^{hi} F4/80^{hi} cells

Absence of YFP labelling in resident CX3CR1⁻ macrophages means that there is no ongoing steady state contribution of monocytes to peripheral macrophages. These cells are prenatally originated and then maintained themselves.

С

YFP⁺Ly6C⁺ and Ly6C⁻ monocytes are sequencially generated

Adoptively transferred Ly6C⁺ (BM and) spleen monocytes differentiate into Ly6C⁻ monocytes

From Cx3cr1^{cre}:R26-YFP mice Txp in WT congenic mice

Monocyte subset dynamics: Ly6C⁺ monos are precursors of Ly6C⁻ monos

(MC21: i.p. every 48 hrs, 44 ng/mouse/time)

Ly6C⁻ BM monos are generated in the BM and Ly6C⁻ blood monos are generated in the blood

Impaired BM exit of Ly6C⁺ blood monocyte affects the Ly6C⁻ cell compartment

Mixed BM chimera: CCR2^{+/+} CX3CR1^{GFP/+} CD45.1⁺ : CCR2^{-/-} CX3CR1^{GFP/+} CD45.2⁺

Prevalence of Ly6C⁺ blood monocytes determines the circulation halflife of Ly6C⁻ blood cells

+ αCD115

Conclusion

Immunity 38, 79–91, January 24, 2013

IRF4 Transcription Factor-Dependent CD11b⁺ Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses

Andreas Schlitzer,^{1,9} Naomi McGovern,^{2,9} Pearline Teo,¹ Teresa Zelante,¹ Koji Atarashi,³ Donovan Low,¹ Adrian W.S. Ho,¹ Peter See,¹ Amanda Shin,¹ Pavandip Singh Wasan,¹ Guillaume Hoeffel,¹ Benoit Malleret,¹ Alexander Heiseke,⁴ Samantha Chew,¹ Laura Jardine,² Harriet A. Purvis,² Catharien M.U. Hilkens,² John Tam,^{5,6} Michael Poidinger,¹ E. Richard Stanley,⁷ Anne B. Krug,⁴ Laurent Renia,¹ Baalasubramanian Sivasankar,⁸ Lai Guan Ng,¹ Matthew Collin,² Paola Ricciardi-Castagnoli,¹ Kenya Honda,³ Muzlifah Haniffa,² and Florent Ginhoux^{1,*}

Immunity 38, 970–983, May 23, 2013

Background

Heterogenicity in lung CD11b⁺ DC population.

Lung CD11b⁺CD24⁺CD64⁻ Cells Are Bona Fide Flt3-dependent DCs, whereas CD11b⁺CD24⁻CD64⁺ Cells Are Csf-1r-dependent

Lung CD11b⁺ DCs are IRF4-dependent

Like in the lung, gut CD11b⁺CD24⁺CD64⁻ cells are bona fide DCs, whereas CD11b⁺CD24⁻CD64⁺ cells are macrophages

0.4 CD103 CD103 CD103 MHCII CD24 103 5.9 17 105 103 103 103 103 104 CD11b CD64 CD11b CD11b CD11c

Α

Fig.4 +

Fig.S3

Colon

Gut lamina propria CD24⁺CD103⁺CD11b⁺ DCs are dependent on IRF4

Fig.4

IRF4 has a prosurvival role and its absence in mucosal tissue CD11b⁺ DCs leads to apoptosis

Itgax-Cre mice x IRF4^{fl/fl} GFP = excision of IRF4 only on CD11c⁺ cells which became GFP⁺

CD11b⁺CD24⁺ DCs in SI (and lung) control Th17 responses

IRF4-dependent CD24⁺CD11b⁺ lung DCs control Th17 cell responses

Homology between human CD1c⁺ DCs and murine CD11b⁺ DCs.

В

Human IRF4 expressing CD1c⁺ DCs induce IL-17 T helper response

Human IRF4 expressing CD1c⁺ DCs induce IL-17 T helper response

Ε

Lung, sorted DC subsets, A. fumigatus hyphae stimulated, autologous CD4⁺ T-cells

Conclusion

- Identification of FLT3-dependent CD11b⁺CD24⁺CD64⁻ bona fide DCs and CSF-1Rdependent CD11b⁺CD24⁻CD64⁺ MACs in steady state lung and SI: existence of a mucosal CD11b⁺ DC lineage?
- DC specific IRF4 deficiency did not fully ablate lung or gut CD24⁺CD11b⁺ DCs, suggesting that IRF4 is not involved in their differentiation but rather in their survival or proliferation.
- IRF4 involvement is not at the DC progenitor level. IRF4 appears to have a prosurvival effect on NLT CD11b⁺ DCs because the remaining lung CD11b⁺ DCs lacking IRF4 exhibited enhanced mitochondrial fragmentation compared to WT cells.
- Characterization of human and murine IRF4⁺CD11b⁺ DCs found in mucosal tissues that control Th17 T cell differentiation through the secretion of IL-23 during steady state and inflammation. Human lung and blood CD1c⁺ DCs pulsed with *A. fumigatus* hyphae were superior at inducing IL-17A production by autologous CD4⁺ T cells.

Background

Rescigno M, Immunity 2009