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host defense = immune resistance + disease tolerance

infectious disease outcome =

pathogen virulence
+

Immune resistance
+

tissue protection/repair




What is the contribution of
disease tolerance to infectious disease
outcome?

e Complications from secondary bacterial infections are a leading cause of
morbidity and mortality associated with influenza virus infection

¢ Influenza virus can suppress the immune response to a bacterial infection
Amanda M Jamieson, et al (2010). Influenza virus-induced glucocorticoids compromise innate host
defense against a secondary bacterial infection. Cell host & microbe, 7(2), 103.)

e Other causes??




Is mortlaity due to pathogen burden?
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Is mortality due to pathogen virulence!?
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Is mortality due to excessive inflammatory responses!?
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Are increased neutrophil infiltration and inflammatory mediators

sufficient to lead to death?
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Combining host immunodeficiency and bacterial attenuation

Neither bacterial growth nor virulence, nor host immune responses were individually required to cause
lethality
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Is mortality due to failed tolerance to tissue damage!
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Is mortality due to failed tolerance to tissue damage!

Amphiregulin is an epithelila growth factor family member. Contributes to tissue homeostasis in the lung
during influenza infection.
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Conclusions

¢ Lethal synergy of inflenza virus and bacteria coinfection can result from loss of
tolerance to infection-induced tissue damage

¢ Morbidity and mortality of coinfection can be independent of pathogen burden or
excessive inflammatory response

¢ Promoting tissue repair can in principle rescue coinfected animals from
morbidity and mortality even without affecting pathogen burden

¢ 3 distinctive host defense strategies: resistance and tolerance
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e During acute intestinal inflammation Ly6CM inflammatory monocytes and
neutrophils infiltrate the intestine

e Neutrophils are involved in pathogen clearance but also collateral tissue damage
(ROS, superoxides, proteases and cytokines)

Are there regulatory mechanisms during acute intestinal
inflammation that dampen the pathogenic potential of neutrophils!?
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Do blood-and SILP-derived Ly6C" monocytes have different
functional phenotyes!?
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prostaglandin-endoperoxide synthase 2 encodes COX-2, a key enzyme in
prostaglandin synthesis.

PGER can be produced by all cell types of the body. Epithelia, fibroblasts, and
infiltrating inflammatory cells representing are the major sources.

PGER can exert suppressive effects on innate cells

Kalinski, P. (2012). Regulation of immune responses by prostaglandin E2. The Journal of Immunology,
188(1), 81-28. doi:10.4049/jimmunol.1101029
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Can intestinal microbial products drive the

regulatory phenotype of

monocytes!?
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What cells types are being regulated by inflammatory monocytes?
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Are neutrophils modulated by monocyte-derived PGE?2 in vivo?
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Conclusions

e Commensals (?) trigger a regulatory programm (PGER, IL-10, arginase and IDO)
in Ly6CHM inflammatory monocytes that limit neutrophilic pathogenic potential

¢ This dual phenotype (regulatory and inflammatory) endows monocytes to control
parasite burden while limiting collateral damage to tissue




