Cell Host & Microbe, Volume 13

Supplemental Information

Intestinal Epithelial Autophagy Is Essential

for Host Defense against Invasive Bacteria

Jamaal L. Benjamin, Rhea Sumpter, Jr., Beth Levine, and Lora V. Hooper

Figure S1. Cephalocaudal Distribution of LC3⁺ Autophagosomes in the Intestinal Epithelium Following S. Typhimurium Oral Challenge, Related to Figure 1

Germfree mice were orally challenged with 10^9 CFU of *S*. Typhimurium. Small intestinal tissues (duodenum, jejunum, ileum) **(A)**, and colon **(B)** were fixed and probed with an anti-LC3 antibody. Scale bars= 50 µm. **(C)** To verify that the GFP signal in Figure 1F was not due to nonspecific autofluorescence, we analyzed a serially-cut section with a no primary antibody (anti-GFP) control. **(D)** Sections of germfree distal small intestine (ileum) were stained with anti-GFP to show that the GFP signal in Figure 1F is specific to *S*. Typhimurium.

Figure S2. Intestinal Colonization Levels of Wild-Type and Mutant S. Typhimurium Strains, Related to Figure 4

Wild-type or isogenic mutant *S*. Typhimurium (Δ SPI-1 or Δ *invA*) was introduced into germ-free mice and small intestinal colonization levels were quantified 24 hours later by dilution plating. ns, not significant. Data are represented as mean±SEM.

Figure S3. Autophagy Induction in the Intestinal Epithelium Is Not TRIF-Dependent, Related to Figure 5 Conventionally-raised wild-type and $TRIF^{-/-}$ mice were orally gavaged with 10⁹ CFU of *S*. Typhimurium. Ileal tissues were taken after 24 hours and LC3⁺ puncta were visualized by immunofluorescence.

Figure S4. Characterization of $Atg5^{\Delta IEC}$ Mice, Related to Figure 6

(A) Western blot of isolated intestinal epithelial cell proteins, probed with anti-ATG5 antibody (Novus Biologicals). ATG5 exists in the ATG12-conjugated form within cells (Mizushima et al., 2001) and is predicted to migrate at 56 kDa.

(B) Small intestines from $Atg5^{fl/fl}$ and $Atg5^{\Delta IEC}$ mice, stained with hematoxylin and eosin. The images show that there is no overt pathology or inflammation in the unchallenged $Atg5^{\Delta IEC}$ mice.

(C) Intestinal permeability measurements in $Atg5^{fl/fl}$ and $Atg5^{\Delta lEC}$ mice. Serum levels of FITC-dextran 4 hours after oral gavage are shown. One set of mice was orally inoculated with 10⁹ CFU of *S*. Typhimurium. As a positive control, intestinal epithelial damage was induced by pretreatment with indomethacin (or 10% DMSO as control) for 1 hour prior to FITC-dextran administration (600 mg/kg body weight; 4 kDa; Sigma). Data are represented as mean±SEM; *, p<0.05; ns, not significant; n=3-4 mice/group.

Supplemental References

Mizushima, N., Yamamoto, A., Hatano, M., Kobayashi, Y., Kabeya, Y., Suzuki, K., Tokuhisa, T., Ohsumi, Y., and Yoshimori, T. (2001). Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol. *152*, 657–668.