

An Inherently Bifunctional Subset of Foxp3⁺ T Helper Cells Is Controlled by the Transcription Factor Eos

Madhav D. Sharma,^{1,2} Lei Huang,^{1,3} Jeong-Hyeon Choi,¹ Eun-Joon Lee,¹ James M. Wilson,¹ Henrique Lemos,¹ Fan Pan,⁵ Bruce R. Blazar,⁶ Drew M. Pardoll,⁵ Andrew L. Mellor,^{1,4} Huidong Shi,¹ and David H. Munn^{1,2,*} ¹Cancer Center ²Department of Pediatrics ³Department of Radiology ⁴Department of Medicine Georgia Regent's University, Augusta, GA 30912, USA ⁵Immunology and Hematopoiesis Division, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA ⁶Department of Pediatrics and Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA *Correspondence: dmunn@gru.edu http://dx.doi.org/10.1016/j.immuni.2013.01.013

Introduction

- Foxp3+ regulatory T cells (Treg) are essential to maintain self-tolerance and under most circumstances, the role of Treg is clearly suppressive.
- However, in certain settings such as vaccination, graft rejection, Treg may also adopt a "helper-like" role.
- These "helper-like" Treg appeared to have lost Foxp3 expression.
- Previous studies have suggested that Foxp3 expression is highly stable in Treg cells once established (Miyao *et al;* Immunity 2012).
- 1. Foxp3⁺ T cells contain a minor nonregulatory population
- 2. Th cells can be generated from Foxp3⁺ non-Treg cells but not Treg cells
- 3. A few Treg cells transiently lose Foxp3 expression but retain its memory
- 4. The committed state of Treg cells is ensured by TSDR demethylation
- Thus, there has been some controversy over whether fully-committed Foxp3-lineage Treg cells ever transform into helper T cells.
- Hypothesis: inducible transformation into helper cells might be a natural property of certain Treg and not a loss of lineage fidelity.

Eos: Foxp3 corepressor

- Eos is a member of the Ikaros family of transcription factors that also include Aiolos and Helios.
- 2. Eos forms a complex with Foxp3 and is required for Foxp3 to inhibit its downstream target genes and maintain Treg suppressive phenotype.

Foxp3 is stable in reprogrammed Treg but Eos is downregulated.

Downregulation of Eos requires IL-6

Forced overexpression of Eos in Treg prevents reprogramming

Forced overexpression of Eos abrogates the functional helper activity of reprogrammed Treg

CD40L sufficient *Foxp3*^{GFP} Thy1.1 Treg or non regulatory CD4⁺ T cells

CFSE labeled OT-I cells plus

+ OVA vaccine

Cd40lg^{-/-} mice

CD40L is critical in order to license DC and CD40lg-/- mice are unable to prime naïve CD8+ T cells to OVA protein

D Cells transferred into *Cd40lg*^{-/-} hosts

Eos-labile phenotype identifies the subset of Treg capable of functional reprogramming

From Fig 1C, IL-6 is an important driver of functional reprogramming

Help from Eos-labile Treg is required during priming of naïve mice to new antigen

Eos labile cells are functionally suppressive Treg

Eos-labile Treg are distinct from Eos-stable Treg by epigenetic analysis

В

Eos-labile are less demethylated at the TSDR than Eos-stable Treg but both showed greater demethylation than non-Treg

Downregulation of Eos is prevented by IDO

pDCs with high IDO expression isolated from TDLN from mice with B16F10 tumors and cocultured with *Foxp3*^{GFP} Treg in the presence of SIINFEKL

Foxp3GFP mice with tumors were treated with tumor specific CFSE labeled pmel-1 T cells + hgp100 peptide vaccine in IFA+CpG

D

KYN: Kynurenine-pathway metabolites

DCs from VDLN with low IDO expression used for co-culture

Discussion and conclusions

- Current study identifies a committed subset of reprogrammable Treg cells characterized by rapid loss of corepressor Eos.
- Absence of Eos-labile Treg cell subset selectively compromised the ability of naïve mice to activate resting DCs and prime initial T cell responses.
- Reprogrammed Treg provide rapid help. This property of Foxp3+ lineage allows Eos-labile Treg to act as "first responders", delivering help when non regulatory T cells have not yet had time to activated.

LETTER

doi:10.1038/nature12199

BACH2 represses effector programs to stabilize T_{reg}-mediated immune homeostasis

Rahul Roychoudhuri¹*, Kiyoshi Hirahara²†*, Kambiz Mousavi³*, David Clever¹, Christopher A. Klebanoff¹, Michael Bonelli², Giuseppe Sciumè², Hossein Zare³, Golnaz Vahedi², Barbara Dema⁴, Zhiya Yu¹, Hui Liu⁵, Hayato Takahashi², Mahadev Rao¹, Pawel Muranski¹, Joseph G. Crompton¹, George Punkosdy⁶, Davide Bedognetti⁵, Ena Wang⁵, Victoria Hoffmann⁷, Juan Rivera⁴, Francesco M. Marincola^{5,8}, Atsushi Nakamura^{9,10}, Vittorio Sartorelli³, Yuka Kanno², Luca Gattinoni¹, Akihiko Muto^{9,10}, Kazuhiko Igarashi^{9,10}, John J. O'Shea²* & Nicholas P. Restifo^{1,11}*

Introduction

- BACH2 is expressed in activated B cells where it acts as a transcriptional regulator of Blimp-1
- It is critical for somatic hypermutation and class switch recombination, as well as for the efficient formation of germinal centres.
- Genetic polymorphisms within a single locus encoding BACH2 are associated with numerous autoimmune and allergic diseases.
- However a function of BACH2 in the maintenance of immune homeostasis has not been established.
- It is proposed that BACH2 may have a role in the prevention of inflammation.

Bach2 KO animals develop spontaneous lethal inflammation

BACH2 is required for suppression of lethal inflammation in a Treg dependent manner

BACH2 represses effector programs to stabilize iTreg cell development

Heat map indicating expression of effector-lineage associated transcript derepressed in KO cells

Discussion and conclusions

- BACH2 represses the differentiation programs of multiple effector lineages in CD4+ T cells.
- By doing so, BACH2 stabilizes the development of Treg while limiting full effector differentiation in conventional T cell lineages.
- Thus BACH2 functions to constrain immune activation, enabling it to play a critical role in the maintenance of immune homeostasis.