Journal Club

10th May 2013 Yasmin

LETTER

doi:10.1038/nature12058

Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility

Heping Xu¹, Xuanying Li¹, Dan Liu¹, Jianfu Li²[†], Xu Zhang¹, Xin Chen¹, Shiyue Hou¹, Lixia Peng¹, Chenguang Xu³, Wanli Liu³, Lianfeng Zhang⁴ & Hai Qi¹

T follicular helper cells

Provide cognate help to B cells in the germinal center to stimulate plasma cell generation

Essential for long-lived memory B cells

Signature molecules:

Co-stimulators: ICOS, CD40L, Ox40, PD-1, BTLA

Chemokine receptor: CXCR5

Cytokines: IL-21

Transcription factors: Bcl-6, c-maf

ICOS-deficiency results in

- defective formation of GC
- Defective class switching

→ ICOS ligand on B cells has an important bystander function to promote localisation of Tfh cells

JI, 2001, Dong G. (Flavell) ICOS in germinal center reactions Nature, 2001 McAdam A.J. ICOS is critical for CD40-mediated class switching

ICOS deficiency reduces T cell relocalization fro

Retroviral transduction of T cells with

ICOS induced recruitment of T cells into the germinal center by mechanisms different from CXCR5 induction

If ICOS on T cells is important – Who is providing its ligand ICOSL?

Is ICOSL on DCs important for deep GC homing?

NS

1cost-10051+1+

Icos+/+

1005/41*

0.6

0.0

OT-II T cells (ICOS+ or -) adoptively transferred ICOSL+ or - DC pulsed with OVA323 (+LPS) \rightarrow subcutaneous injection

 \rightarrow Draining LN 4 days post subc. injection

Is ICOSL on cognate B cells important for deep GC homing?

ICOS+ or - (sdRed) OT-II T cells and MD4 B cells co-transferred into immunized (HEL-OVA) B6 mice \rightarrow Draining LN 4 days post immunization

Likewise, wild type T cells can migrate deep into the follicle in the absence of ICOSL on cognate B cells.

Co-stimulation-independent role of ICOS in directing T cells

into the germinal center

Icos^{-/-}

Icos+/+

0

In order to being recruited into the follicle, T cells must have ICOS (and CXCR5), **but they don't** require concomitant antigen receptor-signaling

OTII T cells (ICOS+ or -) adoptively transferred into NP-**KLH** immunised B6 host → Draining LN 4 days post subc. Injection

Is ICOSL on bystander B cells important for deep GC homing?

Experimental setup:

*After BM-reconstitution, B cells are either

- wild type
- devoid of ICOSL
- devoid of MHC-II molecules \rightarrow congnate independent

Results:

B cells engage ICOSL on activated T cells (without cognate help) to induce migration of T cells deep into the follicle

How does ICOS engagement recruit T cells into the germinal center? ICOS-driven T cell motility – *in vitro*

In vitro stimulation on ICOS-engaging bilayers

ICOS engagement \rightarrow leading edges, pseudopods, coordinated left-right waves

dependent on PI3K (blocking with CAL-101 reduces directed movement; supp fig. 10)

ICOS-driven T cell motility – in vivo

In vivo imaging by 2-photon intravital microscopy

GPF ICOS+/+ OT-II T cells sdRed ICOS-/- OT-II T cells

ICOS-sufficient T cells reduce motility in the absence of ICOSL on B cells

GPF ICOS+/+ OT-II T cells (higher motility) sdRed ICOS-/- OT-II T cells (often depolarised)

At the B-T cell border

Three days after activation by s.c. injected OVA₃₂₃pulsed DC

Conclusions:

Tfh require ICOS engagement in order to migrate into the germinal center

ICOSL is provided by B cells, cognate-independently! \rightarrow Bystander function of B cells

ICOS signaling in Tfh has a "co-stimulation-independent" function of inducing motility and pseudopod formation

ICOSL on B cells can engage ICOS on T cells in an congnate-independent fashion and induce motility and directional movement in T cells.

"B cell compartment is the driver for the development of their own helpers"

"ICOS serves as a 'license' for T cells to take the follicular residence"

ARTICLES

nature immunology

Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells

Ben Roediger¹, Ryan Kyle², Kwok Ho Yip³, Nital Sumaria^{1,11}, Thomas V Guy¹, Brian S Kim⁴⁻⁶, Andrew J Mitchell¹, Szun S Tay¹, Rohit Jain¹, Elizabeth Forbes-Blom², Xi Chen⁷, Philip L Tong^{1,8,9}, Holly A Bolton¹, David Artis^{4,5,10}, William E Paul⁷, Barbara Fazekas de St Groth^{1,8}, Michele A Grimbaldeston³, Graham Le Gros² & Wolfgang Weninger^{1,8,9}

H. Spitz, Nat. Immunol 2013

Eosinophil recruitment

IL-13

- Mucus production
- Mast cells accumulation

B. Stockinger

Epithelial cell damage autocrine T cell 'ILC2 * paracrine IL-9R IL-33R IL-2R

IDENTIFICATION of dermal ILC2 cells by flow cytometry

Whole skin

DISTRIBUTION of ILC2

DEVELOPMENT of dermal ILC2

CD45.2 BM transfer into sublethally irradiated recipients \rightarrow 8 weeks post transfer

dILC2 can re-populate the dermis after irradiation

dILC2 are present in RAG1^{-/-}, IL-25^{-/-}, IL-15^{-/-}, bot not in STAT3^{-/-} or IL-7^{-/-} mice

tho

Normal N. brasiliensis response

CYTOKINE EXPRESSION of dermal ILC2

VitaminD analogon (MC903)
→ TSLP (keratinocytes)
→ Induces <u>little</u> IL-4 in dILC2

VISUALIZATION of dermal ILC2

Cxcr6-eGFP mice can be used to visualise ILC2 cells in the skin

Specific fluorescent labeling (eGFP) of ILC2 cells

Transfer of Rag1 - Cxcr6 + gfp plus Rag1 + mT/mG (mT+) bone marrow into irradiated B6 host \rightarrow 8 wks pt

eGFP+ cell counts in

SHG =second-harmonic generation 28μm dermis, blood vessels: Evans blue

VELOCITY of dermal ILC2

Do these cells interact with other cells?

ILC2-eGFP T cells-mT SHG

CELL-CELL INTERACTION of dermal ILC2 with MAST CELLS

RFP signal in Brainbow mice can be used to visualise mast cells (CD11bloFcR1+ckit+) in the skin

Brainbow RFP– mast cells Cxcr6-eGFP – ILC2

Interaction of ILC2 with mast cells often lasted for 10-30 minutes

Rag1-/-Cxcr6+/GFP with Rag1+/+GPF- BM into irradiated Brainbow mice GFP+ cells in the skin: ILC2 Red cells: radio-resistant mast cells

→ What is the function of this interaction between ILC2 and mast cells?

CELL-CELL INTERACTION of dermal ILC2 with MAST CELLS

In vitro stimulation of mast cells with ILC2 cytokines

IL-13 causes a dose-dependent suppression of IgE-mediated cytokine release by mast cells

IL-9 causes a dose-dependent activation of IgE-mediated cytokine release by mast cells

PHYSIOLOGIC ROLE of dermal ILC2 cells

In vivo stimulation of ILC2 with IL-2 complex (JES6-1) expands dILC2 cells

IL-2 causes a spontaneous inflammation in the skin (2-3 weeks treatment)

Surface profile of dermal ILC2 cells

Table 1 Surface profile of ILC2 cells

	UT	IL-2–JES6-1		
CD25	+	hi		
ICOS	+	hi		
ST2	lo	hi		
CD69	lo	hi		
Integrin β ₇	hi	lo		
CD49d	lo	-		
CD49e	lo	lo		
KLRG1	hi	hi		
NKG2D	-	-		
NKp46	-	-		
CD84	+	+		
CD103	-	-		
IL-13Rα1	+	+		
FceR1	-	-		

Surface expression of various proteins (left column) on ILC2 cells obtained from untreated and IL-2–JES6-1 treated mice (n = 4 per group) and activated *in vivo*, assessed by flow cytometry. –, not detected; +, positive; hi, high expression; lo, low expression. Data are from two independent experiments.

Presence in knockout strains

Sple	een	Luna	Mes	Skin	Lamin	a prop	
NK cell	ILC2	ILC2	ILC2	ILC2	ILC2	ILC22	
—	+	+	+	+	+	_	CD25
—	+	+	+	+	+	lo	ICOS
—	—	—	—	hi	—	—	CD103
+	hi	hi	hi	hi	+	hi	CD90
hi	—	—	-/lo	—	-/lo	-/lo	CD2
+/-	+/-	hi	hi	+/-	hi	+/-	Sca-1
+/-	+/-	+/-	+/-	+/-	+/-	hi	Cxcr6-eGFP
—	lo	+	+	—	hi	+	CD117
hi	—	—	—	—	—	lo	NKp46
+/-	hi	hi	hi	+/-	+/-	—	KLRG1
+	-	NKG2D					
+/-	_	CD27	<u>Com</u>	<u>iparison</u>	<u>to othe</u>	<u>r ILC2 si</u>	<u>ubsets</u>
—	lo	T1-ST2					
+	+	CD38					
+	+	CD39					
+	—	CD49b					
+	lo	CD49d					
+	lo	CD49e					
+/-	lo	CD69					
+	+	CD84					
lo	+	IL13Rα1					
+	_	IL15Rα					
+	—	CD244.2					

FcεR1

Integrin β_7

hi

lo