Journal club Francesca Ronchi April, 11th 2014

NLRP6 Inflammasome Orchestrates the Colonic Host-Microbial Interface by Regulating Goblet Cell Mucus Secretion

Marta Wlodarska,^{1,2} Christoph A. Thaiss,³ Roni Nowarski,⁴ Jorge Henao-Mejia,⁴ Jian-Ping Zhang,⁵ Eric M. Brown,^{1,2} Gad Frankel,⁶ Maayan Levy,³ Meirav N. Katz,^{3,7} William M. Philbrick,⁵ Eran Elinav,^{3,10,*} B. Brett Finlay,^{1,2,8,10,*} and Richard A. Flavell^{4,9,10,*}

Cell 156, 1045–1059, February 27, 2014

Experimental model

Citrobacter rodentium infection:

Mice were orally gavaged with 100μ l of an overnight culture of LB containing approximately 10^9 CFU of a kanamycin-resistant, luciferase-expressing derivative of *C. rodentium* DBS100 (ICC180).

Analysed at 9 (imaging)-15 days p.i.: mainly in distal colon.

NLRP6 Protects from Enhanced Enteric Infection

This phenotype is not due to: decreased production of

proinflammatory cytokines in the colon or spleen (MCP-1, IL-6, TNFa, IFNg),

C. rodentium-specific antibody profile (IgA, IgG),

impaired signaling through the IL-22 pathway and its related downstream antimicrobial peptides (Reg3b and Reg3g), Colonic IL-1b and IL-18 mRNA levels,

Intestinal neutrophil and T cell numbers were reactively elevated in NIrp6-/- as compared to WT mice

Inflammasome Signaling Is Required for Clearance of C. rodentium Infection

I

С

NLRP6 Is Expressed in Goblet Cells

NLRP6 Inflammasome Activity Is Required for Goblet Cell Function and Protection from C. rodentium Invasiveness

NLRP6 Inflammasome Activity Is Required for Goblet Cell Function and Protection from C. rodentium Invasiveness

Fig.4

MUC2 TIR DAPI

MUC2 TIR DAPI

Transmissible Colitogenic Gut Microbiota of NLRP6-Deficient Mice Is Not the Cause of Abnormal Goblet Cell Function and Mucus Secretion

WT singly-housed

ASC-/-(WT)

Ε

Goblet Cell Function and Mucus Secretion Are Independent of Signaling through IL-1R and IL-18

NLRP6 Inflammasome Is Required for Mucus Granule Exocytosis

10.0 kV 2.0 392x

Same in ASC-/- and caspase-1/11-/- mice (fig.S4)

Acc.∨ Spot Magn 10.0 kV 2.0 508x Det WD SE 21.0

NLRP6 Is Required for Autophagosome Formation in the Intestinal Epithelium

Fig.6

Autophagy Is Required for Goblet Cell Function and Mucus Secretion in the Intestine

Conclusion

Segmented Filamentous Bacteria Antigens Presented by Intestinal Dendritic Cells Drive Mucosal Th17 Cell Differentiation

Yoshiyuki Goto,^{1,4} Casandra Panea,^{1,4} Gaku Nakato,¹ Anna Cebula,² Carolyn Lee,¹ Marta Galan Diez,¹ Terri M. Laufer,³ Leszek Ignatowicz,² and Ivaylo I. Ivanov^{1,*}

Immunity 40, 1–14, April 17, 2014

Experimental model

SFB colonization:

Comparison of SFB+ mice (Taconic) and SFB- mice (Jackson)

or

oral gavage with fecal pellets from SFB-monocolonized mice or with fecal pellets from SFBnegative Jackson B6 mice colonized with feces from SFB-monocolonized mice. Control mice: gavaged with fecal pellets from SFB- negative littermates.

Analysis: 2–3 weeks after colonization, in sI LP.

Induction of Intestinal Th17 Cells by SFB Requires MHCII Expression in the Periphery

WT CD45.1+ CD4 T cells transferred into WT CD45.2 mice before or 12 days after SFB colonization.

в

E SFB-positive recipients

Fig.1

SFB-Induced Intestinal Th17 Cells Preferentially Respond to SFB Antigens

Proliferation response (d3) of sorted SI LP TCRb+CD4+ cells from SFB-negative (Jax) and SFB-positive (Tac) WT B6 mice to SFB.

Ec, E. coli, Cp, Clostridium perfringens; MIB, mouse intestinal bacteria (cultured isolates from feces of SFB-negative (Jackson) mice); "-" = no antigen.

SI LP TCRb+CD4+ cells were purified from SFB-negative (No SFB) and SFB-positive (SFB+) WT mice and cocultured with SFB antigens and WT or IAb/ DCs.

SFB-Induced Intestinal Th17 Cells Preferentially Respond to SFB Antigens

Most Intestinal SFB-Induced Th17 Cells Recognize SFB

T cell hybridomas generated from SI LP GFP+ (Th17) and GFP (non-Th17) CD4 T cells from SFB-positive II17GFP mice.

DC Expression of MHCII Is Necessary and Sufficient for SFB-Mediated Th17 Cell Induction

2 weeks after SFB colonization

DC Expression of MHCII Is Necessary and Sufficient for SFB-Mediated Th17 Cell Induction

(No alteration in the level of Th17 polarizing cytokines: IL-17, IL-6, TGFb, IL-21, IL-12p19, IL-1b in terminal ileum, 2 weeks post-SFB-colonisation) Fig.4 22

RORgt+ ILCs but not IECs Inhibit Differentiation of SFB-Independent Intestinal Th17 Cells through MHCII

D

Priming and Induction of Th17 Cells by SFB Occur in the Small Intestine

Transfer of CD45.2+ CD4-VioletCellTrace+ T cells from II17GFP mice into WT CD45.1+ recipients

SFB Induce Th17 Cells in the Absence of Secondary Lymphoid Organs

Α

С

D

Conclusion

