nature immunology

2011

Eosinophils are required for the maintenance of plasma cells in the bone marrow

Van Trung Chu¹, Anja Fröhlich^{1,2}, Gudrun Steinhauser¹, Tobias Scheel¹, Toralf Roch^{1,4}, Simon Fillatreau¹, James J Lee³, Max Löhning^{1,2} & Claudia Berek¹

2014

Eosinophils Promote Generation and Maintenance of Immunoglobulin-A-Expressing Plasma Cells and Contribute to Gut Immune Homeostasis

Van Trung Chu,^{1,5} Alexander Beller,¹ Sebastian Rausch,² Julia Strandmark,² Michael Zänker,³ Olga Arbach,⁴ Andrey Kruglov,¹ and Claudia Berek^{1,*}

CXCR4 6 Long-lived plasma cells in the bone marrow Bone marrow Germinal centre В Memory B cell Long-lived plasma cel FDC Protein Follicular antigen T helper cell Bone marrow e Limited access stromal cell to survival niches: T helper cell decreased survival signals d Preferential differentiation to memory B cells Dendritic Clonal c Immature B cel expansion FDC network b Decreased expression of co-stimulatory gG (peak of IgG (persistence of Plasma cell molecules and immature antibody response) antibody response) interactions between DCs, T cells and B cells Differentiation (and IgG)

- Long-lived plasma cells are generated in the BM and maintained in niches
- Plasma cell survival
 - *in vitro*: APRIL, IL-6, IL-10, IL-4 and IL-5 support survival
 - in vitro: IL-6 is crucial for PC survival
 - *in vivo*: IL-6-deficient mice show a normal PC comparment in the BM
 - APRIL-deficient mice show much reduced PC survival (also BCMA^{-/-} = APRIL receptor)

→ IL-6 and APRIL are important to maintain plasma cells in the bone marrow

Aim: To identify the bone marrow population that supplies survival factors for PC

Bone marrow populations

+

int

high

high

Siglec-F

SSC

-

low

F4/80⁺ Gr-1^{low} subsets in the BM

Bone marrow	<u>Mono-Mø</u> <u>R3</u>	<u>mature Eos</u> <u>R1</u>	<u>immature Eos</u> <u>R2</u>
F4/80	+	+	+
Gr-1	low	low	low
CD11b	int	int	high
Siglec-F	-	high	+
SSC	low	high	int
Cytokines	some April, few IL-6	IL-6 April high	April high

2-Phenyloxazolone immunization protocol

- T-dependent immune response
- antigen-independent activation of eosinophils
- those promote expansion/differentiation of antigen-spec. IgM plasma cells

Eos cytokines promote plasma cell survival

Eos from D6 after 2°

Eos from D6 after 2°, 2 days culture

Immunization with 2-phenyloxazolone and challenge Day 0 and day 6

 \rightarrow Eos production of IL-4, IL-6 and APRIL increases

→ Eos promote plasma cell survival via both, IL-6 and APRIL secretion

Eosinophils contribute to the survival niche for plasma cells

Plasma cell recruitment to the bone marrow

- ➢ No CXCL12 expression by eosinophils → eos not involved in recruitment of plasma cells to the BM
- Eos and plasma cells are recruited to their niche by same CXCL12 source

Balb/c and Δ dblGATA-1 (eosinophil knockout)

Balb/c and Δ dblGATA-1 (eosinophil knockout)

> Plasma cell numbers are reduced by 30% in the absence of eosinophils

 B cell development and maturation seems normal in eos-deficient mice

Long-term survival of plasma cells is dependent on eosinophils

Protocol: $3x 20\mu g \alpha$ -Siglec-F ip

Conclusions and summary

- F4/80⁺ Gr-1^{low} population in the BM produces April and IL-6
- the major source are eosinophils
- Eosinophils provide survival factors (APRIL and IL-6) for BM plasma cells
- Eosinophils co-localise with plasma cells in their niche (CXCR4 expression)

Eosinophils Promote Generation and Maintenance of Immunoglobulin-A-Expressing Plasma Cells and Contribute to Gut Immune Homeostasis

Van Trung Chu,^{1,5} Alexander Beller,¹ Sebastian Rausch,² Julia Strandmark,² Michael Zänker,³ Olga Arbach,⁴ Andrey Kruglov,¹ and Claudia Berek^{1,*}

Small intestinal lamina propria eosinophils

- 5% of small intestinal lamina propria immune cells are eosinophils ٠
- \rightarrow function under *homeostasis* is unclear •

А

Eosinophils in the small intestine produce April and IL-6 as do eosinophils in the bone marrow

Human

- Eos co-localise with IgA+ B cells
- All eos produce APRIL, most of them IL-6

Plasma cell numbers and secreted IgA are reduced in the LP of eosinophil-deficient $\Delta dbIGATA-1$ mice

Eosinophils are essential for the maintenance of IgA+ plasma cells

Eosinophils are essential for the maintenance of IgA+ B cells

Figure 2

IgA+ B and plasma cells is reduced in the LP of eosinophil-deficient mice

Smaller PP, but normal architecture

In vitro: Eosinophils support both plasma cell survival and B cell differentiation

T follicular helper cells & IgG1

In the PP of Δ dblGATA-1 mice Tfh cell-derived cytokines favour class switch to IgG1

Tfh: CD4+ PD-1+ CXCR5+ in PP

- normal frequencies, but reduced total numbers (smaller PP)
- less IL-5 and IL-4, lower Sox4, higher GATA-3 \rightarrow Th2 phenotype

GC B cells in PP of eosinophil-deficient mice preferentially switch to IgG1

CD103+ T cells and DC

CD103+ DC and CD103+ T cells including FoxP3+ Treg cells are reduced in eosinophil-deficient mice

3rd May 2014 Yasmin Köller

Eosinophil-deficient mice have an altered microbial composition

Figure S1, related to Figure 1. Changes in the enteric microbiota in eosinophil-deficient

